基于深度学习的焊接缺陷管道损伤检测自动化研究

IF 1.9 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Computation Pub Date : 2023-11-02 DOI:10.3390/computation11110218
Li Shang, Zi Zhang, Fujian Tang, Qi Cao, Nita Yodo, Hong Pan, Zhibin Lin
{"title":"基于深度学习的焊接缺陷管道损伤检测自动化研究","authors":"Li Shang, Zi Zhang, Fujian Tang, Qi Cao, Nita Yodo, Hong Pan, Zhibin Lin","doi":"10.3390/computation11110218","DOIUrl":null,"url":null,"abstract":"Welded joints in metallic pipelines and other structures are used to connect metallic structures. Welding defects, such as cracks and lack of fusion, are vulnerable to initiating early-age cracking and corrosion. The present damage identification techniques use ultrasonic-guided wave procedures, which depend on the change in the physical characteristics of waveforms as they propagate to determine damage states. However, the complexity of geometry and material discontinuity (e.g., the roughness of a weldment with or without defects) could lead to complicated wave reflection and scatters, thus increasing the difficulty in the signal processing. Artificial intelligence and machine learning exhibit their capability for data fusion, including processing signals originally from ultrasonic-guided waves. This study aims to utilize deep learning approaches, including a convolutional neural network (CNN), Long-short term memory network (LSTM), or hybrid CNN-LSTM model, to demonstrate the capability in automation for damage detection for pipes with welded joints embedded in soil. The damage features in terms of welding defect types and severity as well as multiple defects are used to understand the effectiveness of the hybrid CNN-LSTM model, which is further compared to the two commonly used deep learning approaches, CNN and LSTM. The results showed the hybrid CNN-LSTM model has much higher classification accuracy for damage states under all scenarios in comparison with the CNN and LSTM models. Furthermore, the impacts of the pipelines embedded in different types of materials, ranging from loose sand to stiff soil, on signal processing and data classification were further calibrated. The results demonstrated these deep learning approaches can still perform well to detect various pipeline damage under varying embedment conditions. However, the results demonstrate when concrete is used as an embedding material, high attention to absorbing the signal energy of concrete could pose a challenge for the signal processing, particularly under high noise levels.","PeriodicalId":52148,"journal":{"name":"Computation","volume":"38 8","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning Enriched Automation in Damage Detection for Sustainable Operation in Pipelines with Welding Defects under Varying Embedment Conditions\",\"authors\":\"Li Shang, Zi Zhang, Fujian Tang, Qi Cao, Nita Yodo, Hong Pan, Zhibin Lin\",\"doi\":\"10.3390/computation11110218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Welded joints in metallic pipelines and other structures are used to connect metallic structures. Welding defects, such as cracks and lack of fusion, are vulnerable to initiating early-age cracking and corrosion. The present damage identification techniques use ultrasonic-guided wave procedures, which depend on the change in the physical characteristics of waveforms as they propagate to determine damage states. However, the complexity of geometry and material discontinuity (e.g., the roughness of a weldment with or without defects) could lead to complicated wave reflection and scatters, thus increasing the difficulty in the signal processing. Artificial intelligence and machine learning exhibit their capability for data fusion, including processing signals originally from ultrasonic-guided waves. This study aims to utilize deep learning approaches, including a convolutional neural network (CNN), Long-short term memory network (LSTM), or hybrid CNN-LSTM model, to demonstrate the capability in automation for damage detection for pipes with welded joints embedded in soil. The damage features in terms of welding defect types and severity as well as multiple defects are used to understand the effectiveness of the hybrid CNN-LSTM model, which is further compared to the two commonly used deep learning approaches, CNN and LSTM. The results showed the hybrid CNN-LSTM model has much higher classification accuracy for damage states under all scenarios in comparison with the CNN and LSTM models. Furthermore, the impacts of the pipelines embedded in different types of materials, ranging from loose sand to stiff soil, on signal processing and data classification were further calibrated. The results demonstrated these deep learning approaches can still perform well to detect various pipeline damage under varying embedment conditions. However, the results demonstrate when concrete is used as an embedding material, high attention to absorbing the signal energy of concrete could pose a challenge for the signal processing, particularly under high noise levels.\",\"PeriodicalId\":52148,\"journal\":{\"name\":\"Computation\",\"volume\":\"38 8\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/computation11110218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computation11110218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

金属管道和其他结构中的焊接接头用于连接金属结构。焊接缺陷,如裂纹和熔合不足,容易引发早期开裂和腐蚀。目前的损伤识别技术使用超声导波程序,该程序依赖于波形在传播过程中物理特性的变化来确定损伤状态。然而,几何结构的复杂性和材料的不连续(例如,有缺陷或没有缺陷的焊件的粗糙度)可能导致复杂的波反射和散射,从而增加了信号处理的难度。人工智能和机器学习展示了它们的数据融合能力,包括处理来自超声导波的信号。本研究旨在利用深度学习方法,包括卷积神经网络(CNN)、长短期记忆网络(LSTM)或CNN-LSTM混合模型,来证明对嵌入土壤中的焊接接头的管道进行损伤检测的自动化能力。利用焊接缺陷类型和严重程度以及多个缺陷的损伤特征来了解CNN-LSTM混合模型的有效性,并将其与CNN和LSTM两种常用的深度学习方法进行比较。结果表明,与CNN和LSTM模型相比,CNN-LSTM混合模型在所有场景下对损伤状态的分类精度都有明显提高。此外,进一步标定了埋置在不同类型材料(从松散砂到刚性土)中的管道对信号处理和数据分类的影响。结果表明,这些深度学习方法仍然可以很好地检测不同嵌入条件下的各种管道损伤。然而,结果表明,当混凝土作为嵌入材料时,高度重视吸收混凝土的信号能量可能会对信号处理构成挑战,特别是在高噪声水平下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Learning Enriched Automation in Damage Detection for Sustainable Operation in Pipelines with Welding Defects under Varying Embedment Conditions
Welded joints in metallic pipelines and other structures are used to connect metallic structures. Welding defects, such as cracks and lack of fusion, are vulnerable to initiating early-age cracking and corrosion. The present damage identification techniques use ultrasonic-guided wave procedures, which depend on the change in the physical characteristics of waveforms as they propagate to determine damage states. However, the complexity of geometry and material discontinuity (e.g., the roughness of a weldment with or without defects) could lead to complicated wave reflection and scatters, thus increasing the difficulty in the signal processing. Artificial intelligence and machine learning exhibit their capability for data fusion, including processing signals originally from ultrasonic-guided waves. This study aims to utilize deep learning approaches, including a convolutional neural network (CNN), Long-short term memory network (LSTM), or hybrid CNN-LSTM model, to demonstrate the capability in automation for damage detection for pipes with welded joints embedded in soil. The damage features in terms of welding defect types and severity as well as multiple defects are used to understand the effectiveness of the hybrid CNN-LSTM model, which is further compared to the two commonly used deep learning approaches, CNN and LSTM. The results showed the hybrid CNN-LSTM model has much higher classification accuracy for damage states under all scenarios in comparison with the CNN and LSTM models. Furthermore, the impacts of the pipelines embedded in different types of materials, ranging from loose sand to stiff soil, on signal processing and data classification were further calibrated. The results demonstrated these deep learning approaches can still perform well to detect various pipeline damage under varying embedment conditions. However, the results demonstrate when concrete is used as an embedding material, high attention to absorbing the signal energy of concrete could pose a challenge for the signal processing, particularly under high noise levels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computation
Computation Mathematics-Applied Mathematics
CiteScore
3.50
自引率
4.50%
发文量
201
审稿时长
8 weeks
期刊介绍: Computation a journal of computational science and engineering. Topics: computational biology, including, but not limited to: bioinformatics mathematical modeling, simulation and prediction of nucleic acid (DNA/RNA) and protein sequences, structure and functions mathematical modeling of pathways and genetic interactions neuroscience computation including neural modeling, brain theory and neural networks computational chemistry, including, but not limited to: new theories and methodology including their applications in molecular dynamics computation of electronic structure density functional theory designing and characterization of materials with computation method computation in engineering, including, but not limited to: new theories, methodology and the application of computational fluid dynamics (CFD) optimisation techniques and/or application of optimisation to multidisciplinary systems system identification and reduced order modelling of engineering systems parallel algorithms and high performance computing in engineering.
期刊最新文献
Analytical and Numerical Investigation of Two-Dimensional Heat Transfer with Periodic Boundary Conditions Enhancement of Machine-Learning-Based Flash Calculations near Criticality Using a Resampling Approach Corporate Bankruptcy Prediction Models: A Comparative Study for the Construction Sector in Greece Analysis of Effectiveness of Combined Surface Treatment Methods for Structural Parts with Holes to Enhance Their Fatigue Life A New Mixed Fractional Derivative with Applications in Computational Biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1