使用变压器模型的语义超分辨率

Donghyun Ku, Hanhoon Park
{"title":"使用变压器模型的语义超分辨率","authors":"Donghyun Ku, Hanhoon Park","doi":"10.9717/kmms.2023.26.10.1251","DOIUrl":null,"url":null,"abstract":"This paper proposes an effective method to improve the performance of SwinIR, a vision Transformer-based super-resolution neural network model, by introducing a Transformer decoder with learnable category queries. The decoder allows to extract semantic information of each dataset belonging to different categories (e.g., text and face); the semantic information can improve category-specific texture reconstruction in the process of super-resolution. Experiments were conducted using decoders of different architectures to analyze the performance of the proposed method. The experimental results confirm that the use of decoder can improve the quality of super-resolution images produced by SwinIR qualitatively and quantitatively, although improvements may vary depending on the depth of the decoder and how semantic information is applied.","PeriodicalId":16316,"journal":{"name":"Journal of Korea Multimedia Society","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semantic Super-Resolution Using a Transformer Model\",\"authors\":\"Donghyun Ku, Hanhoon Park\",\"doi\":\"10.9717/kmms.2023.26.10.1251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an effective method to improve the performance of SwinIR, a vision Transformer-based super-resolution neural network model, by introducing a Transformer decoder with learnable category queries. The decoder allows to extract semantic information of each dataset belonging to different categories (e.g., text and face); the semantic information can improve category-specific texture reconstruction in the process of super-resolution. Experiments were conducted using decoders of different architectures to analyze the performance of the proposed method. The experimental results confirm that the use of decoder can improve the quality of super-resolution images produced by SwinIR qualitatively and quantitatively, although improvements may vary depending on the depth of the decoder and how semantic information is applied.\",\"PeriodicalId\":16316,\"journal\":{\"name\":\"Journal of Korea Multimedia Society\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Korea Multimedia Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9717/kmms.2023.26.10.1251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Korea Multimedia Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9717/kmms.2023.26.10.1251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种有效的方法,通过引入具有可学习类别查询的Transformer解码器来提高基于视觉Transformer的超分辨率神经网络模型SwinIR的性能。解码器允许提取属于不同类别(如文本和人脸)的每个数据集的语义信息;在超分辨率过程中,语义信息可以改善分类纹理的重建。利用不同结构的解码器进行了实验,分析了所提方法的性能。实验结果证实,解码器的使用可以在定性和定量上提高SwinIR产生的超分辨率图像的质量,尽管改进可能取决于解码器的深度和语义信息的应用方式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Semantic Super-Resolution Using a Transformer Model
This paper proposes an effective method to improve the performance of SwinIR, a vision Transformer-based super-resolution neural network model, by introducing a Transformer decoder with learnable category queries. The decoder allows to extract semantic information of each dataset belonging to different categories (e.g., text and face); the semantic information can improve category-specific texture reconstruction in the process of super-resolution. Experiments were conducted using decoders of different architectures to analyze the performance of the proposed method. The experimental results confirm that the use of decoder can improve the quality of super-resolution images produced by SwinIR qualitatively and quantitatively, although improvements may vary depending on the depth of the decoder and how semantic information is applied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Usability Study of GAN-based Webtoon Background Image Data Augmentation A Smart Sensor for Sleep Posture Measurement Using Pressure Sensors LNG and HFO Fuel Consumption Forecasting Modeling Using LightGBM Input Data Processing Methods to Improve Point Cloud Completion Model for Dental Prosthesis Low-Resolution Image Upsampling Method Using Super Resolution Based Adaptive Pixel Shuffle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1