Ming Yin, Jiayi Tian, Dan Zhu, Yibo Wang, Jijiao Jiang
{"title":"面向工业制造系统的数据驱动分布式过程监控方法","authors":"Ming Yin, Jiayi Tian, Dan Zhu, Yibo Wang, Jijiao Jiang","doi":"10.1177/01423312231195365","DOIUrl":null,"url":null,"abstract":"Process monitoring technology can help make the right decisions in manufacturing, but the complexity and scale of modern process industry processes render process monitoring difficult. Existing data-driven process monitoring methods utilize abundant monitoring data that are accumulated in industrial processes, but nonlinearity, high coupling, noise effects, and other problems continuously appear in process industry monitoring data. This study proposes a process monitoring method based on variational autoencoder and long short-term memory techniques. The method reconstructs the monitoring data by learning their distribution and time series characteristics under the controlled state, and then it monitors the state of the manufacturing process in real time by calculating the statistics. Evaluation is conducted using the Tennessee Eastman process case verification and experimental comparison method. Then, the proposed method is compared with the centralized process via principal component analysis and kernel principal component analysis. The results show that the proposed method can more significantly improve the effect of fault detection in distributed system process monitoring compared with the traditional method, and it has a better process monitoring effect.","PeriodicalId":49426,"journal":{"name":"Transactions of the Institute of Measurement and Control","volume":"49 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A data-driven distributed process monitoring method for industry manufacturing systems\",\"authors\":\"Ming Yin, Jiayi Tian, Dan Zhu, Yibo Wang, Jijiao Jiang\",\"doi\":\"10.1177/01423312231195365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Process monitoring technology can help make the right decisions in manufacturing, but the complexity and scale of modern process industry processes render process monitoring difficult. Existing data-driven process monitoring methods utilize abundant monitoring data that are accumulated in industrial processes, but nonlinearity, high coupling, noise effects, and other problems continuously appear in process industry monitoring data. This study proposes a process monitoring method based on variational autoencoder and long short-term memory techniques. The method reconstructs the monitoring data by learning their distribution and time series characteristics under the controlled state, and then it monitors the state of the manufacturing process in real time by calculating the statistics. Evaluation is conducted using the Tennessee Eastman process case verification and experimental comparison method. Then, the proposed method is compared with the centralized process via principal component analysis and kernel principal component analysis. The results show that the proposed method can more significantly improve the effect of fault detection in distributed system process monitoring compared with the traditional method, and it has a better process monitoring effect.\",\"PeriodicalId\":49426,\"journal\":{\"name\":\"Transactions of the Institute of Measurement and Control\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Institute of Measurement and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/01423312231195365\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Institute of Measurement and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/01423312231195365","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
A data-driven distributed process monitoring method for industry manufacturing systems
Process monitoring technology can help make the right decisions in manufacturing, but the complexity and scale of modern process industry processes render process monitoring difficult. Existing data-driven process monitoring methods utilize abundant monitoring data that are accumulated in industrial processes, but nonlinearity, high coupling, noise effects, and other problems continuously appear in process industry monitoring data. This study proposes a process monitoring method based on variational autoencoder and long short-term memory techniques. The method reconstructs the monitoring data by learning their distribution and time series characteristics under the controlled state, and then it monitors the state of the manufacturing process in real time by calculating the statistics. Evaluation is conducted using the Tennessee Eastman process case verification and experimental comparison method. Then, the proposed method is compared with the centralized process via principal component analysis and kernel principal component analysis. The results show that the proposed method can more significantly improve the effect of fault detection in distributed system process monitoring compared with the traditional method, and it has a better process monitoring effect.
期刊介绍:
Transactions of the Institute of Measurement and Control is a fully peer-reviewed international journal. The journal covers all areas of applications in instrumentation and control. Its scope encompasses cutting-edge research and development, education and industrial applications.