利用同步提高大传感器数据样本最坏情况下TSN通信时间

IF 2.8 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE ACM Transactions on Embedded Computing Systems Pub Date : 2023-09-11 DOI:10.1145/3609120
Jonas Peeck, Rolf Ernst
{"title":"利用同步提高大传感器数据样本最坏情况下TSN通信时间","authors":"Jonas Peeck, Rolf Ernst","doi":"10.1145/3609120","DOIUrl":null,"url":null,"abstract":"Higher levels of automated driving also require a more sophisticated environmental perception. Therefore, an increasing number of sensors transmit their data samples as frame bursts to other applications for further processing. As a vehicle has to react to its environment in time, such data is subject to safety-critical latency constraints. To keep up with the resulting data rates, there is an ongoing transition to a Time-Sensitive Networking (TSN)-based communication backbone. However, the use of TSN-related industry standards does not match the automotive requirements of large timely sensor data transmission, nor it offers benefits on time-critical transmissions of single control data packets. By using the full data rate of prioritized IEEE 802.1Q Ethernet, giving time guarantees on large data samples is possible, but with strongly degraded results due to data collision. Resolving such collisions with time-aware shaping comes with significant overhead. Hence, rather than optimizing the parameters of the existing protocol, we propose a system design that synchronizes the transmission times of sensor data samples. This limits network protocol complexity and hardware requirements by avoiding tight time synchronization and time-aware shaping. We demonstrate that individual sensor data samples are transmitted without significant interference, exclusively at full Ethernet data rate. We provide a synchronous event model together with a straightforward response time analysis for synchronous multi-frame sample transmissions. The results show that worst-case latencies of such sample communication, in contrast to non-synchronized approaches, are close to their theoretical minimum as well as to simulative results while keeping the overall network utilization high.","PeriodicalId":50914,"journal":{"name":"ACM Transactions on Embedded Computing Systems","volume":"25 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Worst-case TSN Communication Times of Large Sensor Data Samples by Exploiting Synchronization\",\"authors\":\"Jonas Peeck, Rolf Ernst\",\"doi\":\"10.1145/3609120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Higher levels of automated driving also require a more sophisticated environmental perception. Therefore, an increasing number of sensors transmit their data samples as frame bursts to other applications for further processing. As a vehicle has to react to its environment in time, such data is subject to safety-critical latency constraints. To keep up with the resulting data rates, there is an ongoing transition to a Time-Sensitive Networking (TSN)-based communication backbone. However, the use of TSN-related industry standards does not match the automotive requirements of large timely sensor data transmission, nor it offers benefits on time-critical transmissions of single control data packets. By using the full data rate of prioritized IEEE 802.1Q Ethernet, giving time guarantees on large data samples is possible, but with strongly degraded results due to data collision. Resolving such collisions with time-aware shaping comes with significant overhead. Hence, rather than optimizing the parameters of the existing protocol, we propose a system design that synchronizes the transmission times of sensor data samples. This limits network protocol complexity and hardware requirements by avoiding tight time synchronization and time-aware shaping. We demonstrate that individual sensor data samples are transmitted without significant interference, exclusively at full Ethernet data rate. We provide a synchronous event model together with a straightforward response time analysis for synchronous multi-frame sample transmissions. The results show that worst-case latencies of such sample communication, in contrast to non-synchronized approaches, are close to their theoretical minimum as well as to simulative results while keeping the overall network utilization high.\",\"PeriodicalId\":50914,\"journal\":{\"name\":\"ACM Transactions on Embedded Computing Systems\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Embedded Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3609120\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Embedded Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3609120","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

更高级别的自动驾驶还需要更复杂的环境感知能力。因此,越来越多的传感器将其数据样本作为帧突发传输到其他应用程序进行进一步处理。由于车辆必须及时对其环境做出反应,因此这些数据受到安全关键延迟约束。为了跟上由此产生的数据速率,正在向基于时间敏感网络(TSN)的通信骨干网过渡。然而,tsn相关行业标准的使用并不符合汽车对大量及时传感器数据传输的要求,也不能为单个控制数据包的时间关键传输提供好处。通过使用优先级IEEE 802.1Q以太网的全部数据速率,可以在大数据样本上提供时间保证,但由于数据碰撞,结果会严重降低。使用时间感知整形来解决这种冲突会带来很大的开销。因此,我们提出了一种同步传感器数据样本传输时间的系统设计,而不是优化现有协议的参数。通过避免严格的时间同步和时间感知整形,这限制了网络协议的复杂性和硬件需求。我们证明了单个传感器数据样本在没有明显干扰的情况下传输,仅以全以太网数据速率传输。我们为同步多帧样本传输提供了一个同步事件模型和一个简单的响应时间分析。结果表明,与非同步方法相比,这种样本通信的最坏情况延迟接近其理论最小值和模拟结果,同时保持整体网络利用率高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving Worst-case TSN Communication Times of Large Sensor Data Samples by Exploiting Synchronization
Higher levels of automated driving also require a more sophisticated environmental perception. Therefore, an increasing number of sensors transmit their data samples as frame bursts to other applications for further processing. As a vehicle has to react to its environment in time, such data is subject to safety-critical latency constraints. To keep up with the resulting data rates, there is an ongoing transition to a Time-Sensitive Networking (TSN)-based communication backbone. However, the use of TSN-related industry standards does not match the automotive requirements of large timely sensor data transmission, nor it offers benefits on time-critical transmissions of single control data packets. By using the full data rate of prioritized IEEE 802.1Q Ethernet, giving time guarantees on large data samples is possible, but with strongly degraded results due to data collision. Resolving such collisions with time-aware shaping comes with significant overhead. Hence, rather than optimizing the parameters of the existing protocol, we propose a system design that synchronizes the transmission times of sensor data samples. This limits network protocol complexity and hardware requirements by avoiding tight time synchronization and time-aware shaping. We demonstrate that individual sensor data samples are transmitted without significant interference, exclusively at full Ethernet data rate. We provide a synchronous event model together with a straightforward response time analysis for synchronous multi-frame sample transmissions. The results show that worst-case latencies of such sample communication, in contrast to non-synchronized approaches, are close to their theoretical minimum as well as to simulative results while keeping the overall network utilization high.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Embedded Computing Systems
ACM Transactions on Embedded Computing Systems 工程技术-计算机:软件工程
CiteScore
3.70
自引率
0.00%
发文量
138
审稿时长
6 months
期刊介绍: The design of embedded computing systems, both the software and hardware, increasingly relies on sophisticated algorithms, analytical models, and methodologies. ACM Transactions on Embedded Computing Systems (TECS) aims to present the leading work relating to the analysis, design, behavior, and experience with embedded computing systems.
期刊最新文献
Multi-Traffic Resource Optimization for Real-Time Applications with 5G Configured Grant Scheduling Dynamic Cluster Head Selection in WSN Lightweight Hardware-Based Cache Side-Channel Attack Detection for Edge Devices (Edge-CaSCADe) Reordering Functions in Mobiles Apps for Reduced Size and Faster Start-Up NAVIDRO, a CARES architectural style for configuring drone co-simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1