基于人工智能的野生动物检测系统及其应用

Congtian Lin, Jiangning Wang, Liqiang Ji
{"title":"基于人工智能的野生动物检测系统及其应用","authors":"Congtian Lin, Jiangning Wang, Liqiang Ji","doi":"10.3897/biss.7.112456","DOIUrl":null,"url":null,"abstract":"Rapid accumulation of biodiversity data and development of deep learning methods bring the opportunities for detecting and identifying wild animals automatically, based on artificial intelligence. In this paper, we introduce an AI-based wild animal detection system. It is composed of acoustic and image sensors, network infrastructures, species recognition models, and data storage and visualization platform, which go through the technical chain learned from Internet of Things (IOT) and applied to biodiversity detection. The workflow of the system is as follows: Deploying sensors for different detection targets . The acoustic sensor is composed of two microphones for picking up sounds from the environment and an edge computing box for judging and sending back the sound files. The acoustic sensor is suitable for monitoring birds, mammals, chirping insects and frogs. The image sensor is composed of a high performance camera that can be controlled to record surroundings automatically and a video analysis edge box running a model for detecting and recording animals. The image sensor is suitable for monitoring waterbirds in locations without visual obstructions. Adopting different networks according to signal availability . Network infrastructures are critical for the detection system and the task of transferring data collected by sensors. We use the existing network when 4/5G signals are available, and build special networks using Mesh Networking technology for the areas without signals. Multiple network strategies lower the cost for monitoring jobs. Recognizing species from sounds, images or videos . AI plays a key role in our system. We have trained acoustic models for more than 800 Chinese birds and some common chirping insects and frogs, which can be identified from sound files recorded by acoustic sensors. For video and image data, we also have trained models for recognizing 1300 Chinese birds and 400 mammals, which help to discover and count animals captured by image sensors. Moreover, we propose a special method for detecting species through features of voices, images and niche features of animals. It is a flexible framework to adapt to different combinations of acoustic and image sensors. All models were trained with labeled voices, images and distribution data from Chinese species database, ESPECIES. Saving and displaying machine observations . The original sound, image and video files with identified results were stored in the data platform deployed on the cloud for extensible computing and storage. We have developed visualization modules in the platform for displaying sensors on maps using WebGIS to show curves of the number of records and species for each day, real time alerts from sensors capturing animals, and other parameters. Deploying sensors for different detection targets . The acoustic sensor is composed of two microphones for picking up sounds from the environment and an edge computing box for judging and sending back the sound files. The acoustic sensor is suitable for monitoring birds, mammals, chirping insects and frogs. The image sensor is composed of a high performance camera that can be controlled to record surroundings automatically and a video analysis edge box running a model for detecting and recording animals. The image sensor is suitable for monitoring waterbirds in locations without visual obstructions. Adopting different networks according to signal availability . Network infrastructures are critical for the detection system and the task of transferring data collected by sensors. We use the existing network when 4/5G signals are available, and build special networks using Mesh Networking technology for the areas without signals. Multiple network strategies lower the cost for monitoring jobs. Recognizing species from sounds, images or videos . AI plays a key role in our system. We have trained acoustic models for more than 800 Chinese birds and some common chirping insects and frogs, which can be identified from sound files recorded by acoustic sensors. For video and image data, we also have trained models for recognizing 1300 Chinese birds and 400 mammals, which help to discover and count animals captured by image sensors. Moreover, we propose a special method for detecting species through features of voices, images and niche features of animals. It is a flexible framework to adapt to different combinations of acoustic and image sensors. All models were trained with labeled voices, images and distribution data from Chinese species database, ESPECIES. Saving and displaying machine observations . The original sound, image and video files with identified results were stored in the data platform deployed on the cloud for extensible computing and storage. We have developed visualization modules in the platform for displaying sensors on maps using WebGIS to show curves of the number of records and species for each day, real time alerts from sensors capturing animals, and other parameters. For storing and exchanging records of machine observations and information of sensors, and models and key nodes of network, we have proposed a collection of data fields extended from Darwin Core and built up a data model to represent where, when and which sensors observe which species. The system has been applied in several projects since last year. For example, we have deployed 50 sensors across the city of Beijing for detecting birds, and now they have harvested more than 300 million records and detected 320 species, filling the data gaps of Beijing birds from taxonomic coverage to time dimension effectively. Next steps will focus on improving AI models for identifying species with higher accuracy, popularizing this system in biodiversity detection, and building up a mechanism for sharing and publishing machine observations.","PeriodicalId":9011,"journal":{"name":"Biodiversity Information Science and Standards","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An AI-based Wild Animal Detection System and Its Application\",\"authors\":\"Congtian Lin, Jiangning Wang, Liqiang Ji\",\"doi\":\"10.3897/biss.7.112456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rapid accumulation of biodiversity data and development of deep learning methods bring the opportunities for detecting and identifying wild animals automatically, based on artificial intelligence. In this paper, we introduce an AI-based wild animal detection system. It is composed of acoustic and image sensors, network infrastructures, species recognition models, and data storage and visualization platform, which go through the technical chain learned from Internet of Things (IOT) and applied to biodiversity detection. The workflow of the system is as follows: Deploying sensors for different detection targets . The acoustic sensor is composed of two microphones for picking up sounds from the environment and an edge computing box for judging and sending back the sound files. The acoustic sensor is suitable for monitoring birds, mammals, chirping insects and frogs. The image sensor is composed of a high performance camera that can be controlled to record surroundings automatically and a video analysis edge box running a model for detecting and recording animals. The image sensor is suitable for monitoring waterbirds in locations without visual obstructions. Adopting different networks according to signal availability . Network infrastructures are critical for the detection system and the task of transferring data collected by sensors. We use the existing network when 4/5G signals are available, and build special networks using Mesh Networking technology for the areas without signals. Multiple network strategies lower the cost for monitoring jobs. Recognizing species from sounds, images or videos . AI plays a key role in our system. We have trained acoustic models for more than 800 Chinese birds and some common chirping insects and frogs, which can be identified from sound files recorded by acoustic sensors. For video and image data, we also have trained models for recognizing 1300 Chinese birds and 400 mammals, which help to discover and count animals captured by image sensors. Moreover, we propose a special method for detecting species through features of voices, images and niche features of animals. It is a flexible framework to adapt to different combinations of acoustic and image sensors. All models were trained with labeled voices, images and distribution data from Chinese species database, ESPECIES. Saving and displaying machine observations . The original sound, image and video files with identified results were stored in the data platform deployed on the cloud for extensible computing and storage. We have developed visualization modules in the platform for displaying sensors on maps using WebGIS to show curves of the number of records and species for each day, real time alerts from sensors capturing animals, and other parameters. Deploying sensors for different detection targets . The acoustic sensor is composed of two microphones for picking up sounds from the environment and an edge computing box for judging and sending back the sound files. The acoustic sensor is suitable for monitoring birds, mammals, chirping insects and frogs. The image sensor is composed of a high performance camera that can be controlled to record surroundings automatically and a video analysis edge box running a model for detecting and recording animals. The image sensor is suitable for monitoring waterbirds in locations without visual obstructions. Adopting different networks according to signal availability . Network infrastructures are critical for the detection system and the task of transferring data collected by sensors. We use the existing network when 4/5G signals are available, and build special networks using Mesh Networking technology for the areas without signals. Multiple network strategies lower the cost for monitoring jobs. Recognizing species from sounds, images or videos . AI plays a key role in our system. We have trained acoustic models for more than 800 Chinese birds and some common chirping insects and frogs, which can be identified from sound files recorded by acoustic sensors. For video and image data, we also have trained models for recognizing 1300 Chinese birds and 400 mammals, which help to discover and count animals captured by image sensors. Moreover, we propose a special method for detecting species through features of voices, images and niche features of animals. It is a flexible framework to adapt to different combinations of acoustic and image sensors. All models were trained with labeled voices, images and distribution data from Chinese species database, ESPECIES. Saving and displaying machine observations . The original sound, image and video files with identified results were stored in the data platform deployed on the cloud for extensible computing and storage. We have developed visualization modules in the platform for displaying sensors on maps using WebGIS to show curves of the number of records and species for each day, real time alerts from sensors capturing animals, and other parameters. For storing and exchanging records of machine observations and information of sensors, and models and key nodes of network, we have proposed a collection of data fields extended from Darwin Core and built up a data model to represent where, when and which sensors observe which species. The system has been applied in several projects since last year. For example, we have deployed 50 sensors across the city of Beijing for detecting birds, and now they have harvested more than 300 million records and detected 320 species, filling the data gaps of Beijing birds from taxonomic coverage to time dimension effectively. Next steps will focus on improving AI models for identifying species with higher accuracy, popularizing this system in biodiversity detection, and building up a mechanism for sharing and publishing machine observations.\",\"PeriodicalId\":9011,\"journal\":{\"name\":\"Biodiversity Information Science and Standards\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biodiversity Information Science and Standards\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3897/biss.7.112456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodiversity Information Science and Standards","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3897/biss.7.112456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们在平台中开发了可视化模块,用于使用WebGIS在地图上显示传感器,以显示每天记录和物种数量的曲线,来自捕获动物的传感器的实时警报和其他参数。为了存储和交换机器观测记录和传感器信息,以及模型和网络关键节点,我们提出了从达尔文核心扩展的数据字段集合,并建立了一个数据模型来表示哪个传感器在何时何地观测到哪个物种。自去年以来,该系统已在多个项目中得到应用。例如,我们在北京市部署了50个用于鸟类探测的传感器,目前已经收集了3亿多条记录,检测了320种,有效地填补了北京鸟类从分类覆盖到时间维度的数据空白。下一步将专注于改进人工智能模型,以更高的精度识别物种,在生物多样性检测中推广该系统,并建立共享和发布机器观察结果的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An AI-based Wild Animal Detection System and Its Application
Rapid accumulation of biodiversity data and development of deep learning methods bring the opportunities for detecting and identifying wild animals automatically, based on artificial intelligence. In this paper, we introduce an AI-based wild animal detection system. It is composed of acoustic and image sensors, network infrastructures, species recognition models, and data storage and visualization platform, which go through the technical chain learned from Internet of Things (IOT) and applied to biodiversity detection. The workflow of the system is as follows: Deploying sensors for different detection targets . The acoustic sensor is composed of two microphones for picking up sounds from the environment and an edge computing box for judging and sending back the sound files. The acoustic sensor is suitable for monitoring birds, mammals, chirping insects and frogs. The image sensor is composed of a high performance camera that can be controlled to record surroundings automatically and a video analysis edge box running a model for detecting and recording animals. The image sensor is suitable for monitoring waterbirds in locations without visual obstructions. Adopting different networks according to signal availability . Network infrastructures are critical for the detection system and the task of transferring data collected by sensors. We use the existing network when 4/5G signals are available, and build special networks using Mesh Networking technology for the areas without signals. Multiple network strategies lower the cost for monitoring jobs. Recognizing species from sounds, images or videos . AI plays a key role in our system. We have trained acoustic models for more than 800 Chinese birds and some common chirping insects and frogs, which can be identified from sound files recorded by acoustic sensors. For video and image data, we also have trained models for recognizing 1300 Chinese birds and 400 mammals, which help to discover and count animals captured by image sensors. Moreover, we propose a special method for detecting species through features of voices, images and niche features of animals. It is a flexible framework to adapt to different combinations of acoustic and image sensors. All models were trained with labeled voices, images and distribution data from Chinese species database, ESPECIES. Saving and displaying machine observations . The original sound, image and video files with identified results were stored in the data platform deployed on the cloud for extensible computing and storage. We have developed visualization modules in the platform for displaying sensors on maps using WebGIS to show curves of the number of records and species for each day, real time alerts from sensors capturing animals, and other parameters. Deploying sensors for different detection targets . The acoustic sensor is composed of two microphones for picking up sounds from the environment and an edge computing box for judging and sending back the sound files. The acoustic sensor is suitable for monitoring birds, mammals, chirping insects and frogs. The image sensor is composed of a high performance camera that can be controlled to record surroundings automatically and a video analysis edge box running a model for detecting and recording animals. The image sensor is suitable for monitoring waterbirds in locations without visual obstructions. Adopting different networks according to signal availability . Network infrastructures are critical for the detection system and the task of transferring data collected by sensors. We use the existing network when 4/5G signals are available, and build special networks using Mesh Networking technology for the areas without signals. Multiple network strategies lower the cost for monitoring jobs. Recognizing species from sounds, images or videos . AI plays a key role in our system. We have trained acoustic models for more than 800 Chinese birds and some common chirping insects and frogs, which can be identified from sound files recorded by acoustic sensors. For video and image data, we also have trained models for recognizing 1300 Chinese birds and 400 mammals, which help to discover and count animals captured by image sensors. Moreover, we propose a special method for detecting species through features of voices, images and niche features of animals. It is a flexible framework to adapt to different combinations of acoustic and image sensors. All models were trained with labeled voices, images and distribution data from Chinese species database, ESPECIES. Saving and displaying machine observations . The original sound, image and video files with identified results were stored in the data platform deployed on the cloud for extensible computing and storage. We have developed visualization modules in the platform for displaying sensors on maps using WebGIS to show curves of the number of records and species for each day, real time alerts from sensors capturing animals, and other parameters. For storing and exchanging records of machine observations and information of sensors, and models and key nodes of network, we have proposed a collection of data fields extended from Darwin Core and built up a data model to represent where, when and which sensors observe which species. The system has been applied in several projects since last year. For example, we have deployed 50 sensors across the city of Beijing for detecting birds, and now they have harvested more than 300 million records and detected 320 species, filling the data gaps of Beijing birds from taxonomic coverage to time dimension effectively. Next steps will focus on improving AI models for identifying species with higher accuracy, popularizing this system in biodiversity detection, and building up a mechanism for sharing and publishing machine observations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Meeting Report for the Phenoscape TraitFest 2023 with Comments on Organising Interdisciplinary Meetings Implementation Experience Report for the Developing Latimer Core Standard: The DiSSCo Flanders use-case Structuring Information from Plant Morphological Descriptions using Open Information Extraction The Future of Natural History Transcription: Navigating AI advancements with VoucherVision and the Specimen Label Transcription Project (SLTP) Comparative Study: Evaluating the effects of class balancing on transformer performance in the PlantNet-300k image dataset
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1