雀形目鸟类的比较精子蛋白质组学反映了精子形态和线粒体代谢

IF 1.5 4区 生物学 Q2 ZOOLOGY Journal of Vertebrate Biology Pub Date : 2023-09-11 DOI:10.25225/jvb.23045
Tereza Otčenášková, Romana Stopková, Aneta Zemanová, Kristýna Míčková, Karel Harant, Oldřich Tomášek, Tomáš Albrecht, Pavel Stopka
{"title":"雀形目鸟类的比较精子蛋白质组学反映了精子形态和线粒体代谢","authors":"Tereza Otčenášková, Romana Stopková, Aneta Zemanová, Kristýna Míčková, Karel Harant, Oldřich Tomášek, Tomáš Albrecht, Pavel Stopka","doi":"10.25225/jvb.23045","DOIUrl":null,"url":null,"abstract":"Abstract. Spermatozoa are the most variable cells across animal taxa. Phylogeny, speciation and postcopulatory sexual selection are typical factors that explain the sperm morphology variation in animals, and now these differences can also be explored on the level of genomic and proteomic differentiation. However, in non-model organisms, it is often difficult to employ these techniques because genomes are not yet available for most animal species, particularly for free-living songbirds (Passeriformes). Here, we employed label-free proteomics to generate proteomes in the zebra finch, a songbird species with an annotated genome and five wild-living songbirds representing five families within the Passerida clade, all with poorly known genomes. The results show that protein mapping of the new passerine proteomes to the zebra finch genome was successful, thus yielding highly similar protein identifications and a sufficient number of unique peptides in all the studied proteomes. Interestingly, while passerine sperm proteomes only partially reflect phylogenetic relationships between passerine families, midpiece length correlates with at least 59 proteins enriched in mitochondrial metabolism. Similar sperm proteomes seem to have evolved convergently across passerine lineages, potentially due to varying levels of sperm competition and marked variation in sperm sizes.","PeriodicalId":48482,"journal":{"name":"Journal of Vertebrate Biology","volume":"57 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative sperm proteomics in selected passerine birds reflects sperm morphology and mitochondrial metabolism\",\"authors\":\"Tereza Otčenášková, Romana Stopková, Aneta Zemanová, Kristýna Míčková, Karel Harant, Oldřich Tomášek, Tomáš Albrecht, Pavel Stopka\",\"doi\":\"10.25225/jvb.23045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Spermatozoa are the most variable cells across animal taxa. Phylogeny, speciation and postcopulatory sexual selection are typical factors that explain the sperm morphology variation in animals, and now these differences can also be explored on the level of genomic and proteomic differentiation. However, in non-model organisms, it is often difficult to employ these techniques because genomes are not yet available for most animal species, particularly for free-living songbirds (Passeriformes). Here, we employed label-free proteomics to generate proteomes in the zebra finch, a songbird species with an annotated genome and five wild-living songbirds representing five families within the Passerida clade, all with poorly known genomes. The results show that protein mapping of the new passerine proteomes to the zebra finch genome was successful, thus yielding highly similar protein identifications and a sufficient number of unique peptides in all the studied proteomes. Interestingly, while passerine sperm proteomes only partially reflect phylogenetic relationships between passerine families, midpiece length correlates with at least 59 proteins enriched in mitochondrial metabolism. Similar sperm proteomes seem to have evolved convergently across passerine lineages, potentially due to varying levels of sperm competition and marked variation in sperm sizes.\",\"PeriodicalId\":48482,\"journal\":{\"name\":\"Journal of Vertebrate Biology\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vertebrate Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25225/jvb.23045\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vertebrate Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25225/jvb.23045","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative sperm proteomics in selected passerine birds reflects sperm morphology and mitochondrial metabolism
Abstract. Spermatozoa are the most variable cells across animal taxa. Phylogeny, speciation and postcopulatory sexual selection are typical factors that explain the sperm morphology variation in animals, and now these differences can also be explored on the level of genomic and proteomic differentiation. However, in non-model organisms, it is often difficult to employ these techniques because genomes are not yet available for most animal species, particularly for free-living songbirds (Passeriformes). Here, we employed label-free proteomics to generate proteomes in the zebra finch, a songbird species with an annotated genome and five wild-living songbirds representing five families within the Passerida clade, all with poorly known genomes. The results show that protein mapping of the new passerine proteomes to the zebra finch genome was successful, thus yielding highly similar protein identifications and a sufficient number of unique peptides in all the studied proteomes. Interestingly, while passerine sperm proteomes only partially reflect phylogenetic relationships between passerine families, midpiece length correlates with at least 59 proteins enriched in mitochondrial metabolism. Similar sperm proteomes seem to have evolved convergently across passerine lineages, potentially due to varying levels of sperm competition and marked variation in sperm sizes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
23
期刊最新文献
An investigation into the possibilities of sex and age determination of Eurasian woodcock (Scolopax rusticola L.) based on biometric parameters, using conditional inference trees and minimal important differences Prof. Dr Mirosław Przybylski (1956-2023) Prof. Gordon Howard Copp (1956-2023) Rank-dependency of major urinary protein excretion in two house mouse subspecies A new luminous roughy fish from northeastern Taiwan, with comments on congeners in Taiwan (Trachichthyidae: Aulotrachichthys)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1