Ho-Seung Kim, Hyo-Jun Kim, Jun-Su Choi, Jee-Hyong Lee
{"title":"BeSCL:更好的半监督和对比学习用于图节点分类","authors":"Ho-Seung Kim, Hyo-Jun Kim, Jun-Su Choi, Jee-Hyong Lee","doi":"10.5391/jkiis.2023.33.4.287","DOIUrl":null,"url":null,"abstract":"그래프 노드 분류 문제를 해결하기 위해 많은 준지도 및 비지도 학습 방법들이 연구되고 있다. 특히 레이블 정보가 부족한 상황을 많이 해결하고자 하는데, 우리는 이를 해결하고자 레이블 정보를 이용한 데이터 증강과 대조 학습을 결합한 BeSCL(Better Semi-supervised and Contrastive Learning) 이라는 새로운 알고리즘을 제안한다. BeSCL은 준지도 학습 환경에서 진행되며, 그래프에 데이터 증강을 적용하여, 새로운 그래프 데이터를 만들고 이를 비지도 학습 환경에서 이용되는 대조 학습을 이용하여 학습한다. 실험결과, BeSCL은 데이터 양에 관계 없이 강건한 성능을 보이며, 기존 노드 분류 방법론 대비 더 뛰어난 성능을 보인다.","PeriodicalId":17349,"journal":{"name":"Journal of The Korean Institute of Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BeSCL: Better Semi-supervised and Contrastive Learning for graph node classification\",\"authors\":\"Ho-Seung Kim, Hyo-Jun Kim, Jun-Su Choi, Jee-Hyong Lee\",\"doi\":\"10.5391/jkiis.2023.33.4.287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"그래프 노드 분류 문제를 해결하기 위해 많은 준지도 및 비지도 학습 방법들이 연구되고 있다. 특히 레이블 정보가 부족한 상황을 많이 해결하고자 하는데, 우리는 이를 해결하고자 레이블 정보를 이용한 데이터 증강과 대조 학습을 결합한 BeSCL(Better Semi-supervised and Contrastive Learning) 이라는 새로운 알고리즘을 제안한다. BeSCL은 준지도 학습 환경에서 진행되며, 그래프에 데이터 증강을 적용하여, 새로운 그래프 데이터를 만들고 이를 비지도 학습 환경에서 이용되는 대조 학습을 이용하여 학습한다. 실험결과, BeSCL은 데이터 양에 관계 없이 강건한 성능을 보이며, 기존 노드 분류 방법론 대비 더 뛰어난 성능을 보인다.\",\"PeriodicalId\":17349,\"journal\":{\"name\":\"Journal of The Korean Institute of Intelligent Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Korean Institute of Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5391/jkiis.2023.33.4.287\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Korean Institute of Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5391/jkiis.2023.33.4.287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
为了解决图表节点分类问题,正在研究许多准地图和非地图学习方法。为了解决标签信息不足的问题,我们提出了一种新的算法,叫做BeSCL(Better Semi-supervised and Contrastive Learning),它结合了标签信息增强数据和对照学习。BeSCL在准指导学习环境中进行,在图表中增强数据,创建新的图表数据,并在非指导学习环境中利用对照学习进行学习。实验结果显示,BeSCL的性能非常强大,与数据量无关,比现有的节点分类方法论更出色。
BeSCL: Better Semi-supervised and Contrastive Learning for graph node classification
그래프 노드 분류 문제를 해결하기 위해 많은 준지도 및 비지도 학습 방법들이 연구되고 있다. 특히 레이블 정보가 부족한 상황을 많이 해결하고자 하는데, 우리는 이를 해결하고자 레이블 정보를 이용한 데이터 증강과 대조 학습을 결합한 BeSCL(Better Semi-supervised and Contrastive Learning) 이라는 새로운 알고리즘을 제안한다. BeSCL은 준지도 학습 환경에서 진행되며, 그래프에 데이터 증강을 적용하여, 새로운 그래프 데이터를 만들고 이를 비지도 학습 환경에서 이용되는 대조 학습을 이용하여 학습한다. 실험결과, BeSCL은 데이터 양에 관계 없이 강건한 성능을 보이며, 기존 노드 분류 방법론 대비 더 뛰어난 성능을 보인다.