{"title":"使用主题建模和时间序列回归分析的医疗保健大数据新闻分析","authors":"Eun-Jung Kim, Suk-Gwon Chang, Sang-Yong Tom Lee","doi":"10.14329/isr.2023.25.3.163","DOIUrl":null,"url":null,"abstract":"본 연구는 디지털 헬스케어 산업 활성화를 위한 정책적 접근으로서, 주요 의제 도출 및 정책적 시사점을 제시하는데 목적이 있다. 본 연구에서는 10년(2013년~2022년) 간의 헬스케어와 관련된 뉴스 빅데이터 총 91,873건을 수집하여 토픽모델링 분석, 다차원척도 분석 및 시계열 회귀분석을 수행하였다. 토픽모델링 분석 및 다차원척도법을 통해 총 20개의 토픽을 도출하여 2차원선상에 토픽들의 군집 형태를 파악하였고, 시계열 회귀분석을 통해, 상승 추세를 나타내는 4개의 Hot topic(건강관리, 바이오제약, 기업매출․전망, 정부․정책)과 하향 추세를 나타내는 3개의 Cold topic(스마트기기, 주식․투자, 도시․건설)을 도출되었다. 본 연구의 결과는 우리나라 정책을 수립하는 정부 기관에 중요한 기초 자료로 활용될 수 있을 것이다.","PeriodicalId":52188,"journal":{"name":"Asia Pacific Journal of Information Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Big Data News Analysis in Healthcare Using Topic Modeling and Time Series Regression Analysis\",\"authors\":\"Eun-Jung Kim, Suk-Gwon Chang, Sang-Yong Tom Lee\",\"doi\":\"10.14329/isr.2023.25.3.163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"본 연구는 디지털 헬스케어 산업 활성화를 위한 정책적 접근으로서, 주요 의제 도출 및 정책적 시사점을 제시하는데 목적이 있다. 본 연구에서는 10년(2013년~2022년) 간의 헬스케어와 관련된 뉴스 빅데이터 총 91,873건을 수집하여 토픽모델링 분석, 다차원척도 분석 및 시계열 회귀분석을 수행하였다. 토픽모델링 분석 및 다차원척도법을 통해 총 20개의 토픽을 도출하여 2차원선상에 토픽들의 군집 형태를 파악하였고, 시계열 회귀분석을 통해, 상승 추세를 나타내는 4개의 Hot topic(건강관리, 바이오제약, 기업매출․전망, 정부․정책)과 하향 추세를 나타내는 3개의 Cold topic(스마트기기, 주식․투자, 도시․건설)을 도출되었다. 본 연구의 결과는 우리나라 정책을 수립하는 정부 기관에 중요한 기초 자료로 활용될 수 있을 것이다.\",\"PeriodicalId\":52188,\"journal\":{\"name\":\"Asia Pacific Journal of Information Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia Pacific Journal of Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14329/isr.2023.25.3.163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia Pacific Journal of Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14329/isr.2023.25.3.163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
Big Data News Analysis in Healthcare Using Topic Modeling and Time Series Regression Analysis
본 연구는 디지털 헬스케어 산업 활성화를 위한 정책적 접근으로서, 주요 의제 도출 및 정책적 시사점을 제시하는데 목적이 있다. 본 연구에서는 10년(2013년~2022년) 간의 헬스케어와 관련된 뉴스 빅데이터 총 91,873건을 수집하여 토픽모델링 분석, 다차원척도 분석 및 시계열 회귀분석을 수행하였다. 토픽모델링 분석 및 다차원척도법을 통해 총 20개의 토픽을 도출하여 2차원선상에 토픽들의 군집 형태를 파악하였고, 시계열 회귀분석을 통해, 상승 추세를 나타내는 4개의 Hot topic(건강관리, 바이오제약, 기업매출․전망, 정부․정책)과 하향 추세를 나타내는 3개의 Cold topic(스마트기기, 주식․투자, 도시․건설)을 도출되었다. 본 연구의 결과는 우리나라 정책을 수립하는 정부 기관에 중요한 기초 자료로 활용될 수 있을 것이다.