{"title":"老年人高自杀风险群体:原因分析及预测模型的建立","authors":"Gayeon Park, Woosik Shin, Hee-Woong Kim","doi":"10.14329/isr.2023.25.3.059","DOIUrl":null,"url":null,"abstract":"한국의 노인(65세 이상) 자살 문제는 점차 심각해지고 있는 추세이다. 급격한 인구 고령화 흐름에 따라 이러한 고령층의 자살 추세가 더욱 가속화될 것으로 추정되고 있어, 노인 자살을 예방하고 감소시키는 것이 개인 뿐만 아니라 중요한 사회적 과제로 대두되고 있다. 따라서 본 연구는 한국 노인들을 대상으로 자살 생각의 원인 요인을 파악하고 예측 모델을 개발하는 것을 목적 한다. 본 연구는 한국복지패널조사에서 제공하는 7개년의 패널 데이터를 활용하였으며 자살의 대인 관계 이론(interpersonal theory of suicide)과 사회 해체 이론(social disorganization theory)을 바탕으로 노인 자살의 잠재 원인 요인들을 선정한다. 다음으로 노인의 자살 생각에 대한 원인 요인 파악을 위해 패널 로짓 모형 분석을 진행하고 노인 자살 생각의 예측 모델 개발을 위해 딥 러닝과 머신 러닝 알고리즘을 활용한다. 본 연구는 계량 모형 분석을 통해 검증한 주요 원인 요인들을 활용하여 노인 자살을 예방할 수 있는 구체적인 노인 복지 정책 수립에 기여하고자 한다. 본 연구에서 제시된 예측 모델은 자살 고위험군 노인을 선별하고 관리할 수 있는 방안 마련의 기반을 제공한다. 또한 본 연구는 혼합방법론의 시너지를 보였다는 점에서 학술적 시사점을 가진다.","PeriodicalId":52188,"journal":{"name":"Asia Pacific Journal of Information Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High Suicidal Risk Group of Elderly : Identification of Causal Factors and Development of Predictive Model\",\"authors\":\"Gayeon Park, Woosik Shin, Hee-Woong Kim\",\"doi\":\"10.14329/isr.2023.25.3.059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"한국의 노인(65세 이상) 자살 문제는 점차 심각해지고 있는 추세이다. 급격한 인구 고령화 흐름에 따라 이러한 고령층의 자살 추세가 더욱 가속화될 것으로 추정되고 있어, 노인 자살을 예방하고 감소시키는 것이 개인 뿐만 아니라 중요한 사회적 과제로 대두되고 있다. 따라서 본 연구는 한국 노인들을 대상으로 자살 생각의 원인 요인을 파악하고 예측 모델을 개발하는 것을 목적 한다. 본 연구는 한국복지패널조사에서 제공하는 7개년의 패널 데이터를 활용하였으며 자살의 대인 관계 이론(interpersonal theory of suicide)과 사회 해체 이론(social disorganization theory)을 바탕으로 노인 자살의 잠재 원인 요인들을 선정한다. 다음으로 노인의 자살 생각에 대한 원인 요인 파악을 위해 패널 로짓 모형 분석을 진행하고 노인 자살 생각의 예측 모델 개발을 위해 딥 러닝과 머신 러닝 알고리즘을 활용한다. 본 연구는 계량 모형 분석을 통해 검증한 주요 원인 요인들을 활용하여 노인 자살을 예방할 수 있는 구체적인 노인 복지 정책 수립에 기여하고자 한다. 본 연구에서 제시된 예측 모델은 자살 고위험군 노인을 선별하고 관리할 수 있는 방안 마련의 기반을 제공한다. 또한 본 연구는 혼합방법론의 시너지를 보였다는 점에서 학술적 시사점을 가진다.\",\"PeriodicalId\":52188,\"journal\":{\"name\":\"Asia Pacific Journal of Information Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia Pacific Journal of Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14329/isr.2023.25.3.059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia Pacific Journal of Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14329/isr.2023.25.3.059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0
摘要
韩国的老人(65岁以上)自杀问题呈现出日益严重的趋势。据推测,随着人口老龄化的急剧发展,高龄层的自杀趋势将进一步加速。因此,预防和减少老人自杀不仅是个人,还成为重要的社会课题。因此本研究的目的是以韩国老人为对象,掌握自杀想法的原因要素,开发预测模型。本研究利用了韩国福利调查小组提供的7年的小组数据,并以自杀的人际关系理论(interpersonal theory of suicide)和社会解体理论(social disorganization theory)为基础,选定了老人自杀的潜在原因。其次,为掌握老人自杀想法的原因因素,用面板进行模型分析;为开发老人自杀想法的预测模型,利用深度学习和机器学习算法。本研究将利用计量模型分析验证的主要原因因素,为制定预防老人自杀的具体老人福利政策做出贡献。本研究提出的预测模型为筛选和管理自杀高危人群老人提供了基础。另外,本研究体现了混合方法论的协同效应,从这一点来看,具有学术启示。
High Suicidal Risk Group of Elderly : Identification of Causal Factors and Development of Predictive Model
한국의 노인(65세 이상) 자살 문제는 점차 심각해지고 있는 추세이다. 급격한 인구 고령화 흐름에 따라 이러한 고령층의 자살 추세가 더욱 가속화될 것으로 추정되고 있어, 노인 자살을 예방하고 감소시키는 것이 개인 뿐만 아니라 중요한 사회적 과제로 대두되고 있다. 따라서 본 연구는 한국 노인들을 대상으로 자살 생각의 원인 요인을 파악하고 예측 모델을 개발하는 것을 목적 한다. 본 연구는 한국복지패널조사에서 제공하는 7개년의 패널 데이터를 활용하였으며 자살의 대인 관계 이론(interpersonal theory of suicide)과 사회 해체 이론(social disorganization theory)을 바탕으로 노인 자살의 잠재 원인 요인들을 선정한다. 다음으로 노인의 자살 생각에 대한 원인 요인 파악을 위해 패널 로짓 모형 분석을 진행하고 노인 자살 생각의 예측 모델 개발을 위해 딥 러닝과 머신 러닝 알고리즘을 활용한다. 본 연구는 계량 모형 분석을 통해 검증한 주요 원인 요인들을 활용하여 노인 자살을 예방할 수 있는 구체적인 노인 복지 정책 수립에 기여하고자 한다. 본 연구에서 제시된 예측 모델은 자살 고위험군 노인을 선별하고 관리할 수 있는 방안 마련의 기반을 제공한다. 또한 본 연구는 혼합방법론의 시너지를 보였다는 점에서 학술적 시사점을 가진다.