温热环境对短尾草幼鱼乳酸和苹果酸脱氢酶同工酶的调节

Rishikesh S. Dalvi, Asim K. Pal, Dipesh Debnath
{"title":"温热环境对短尾草幼鱼乳酸和苹果酸脱氢酶同工酶的调节","authors":"Rishikesh S. Dalvi, Asim K. Pal, Dipesh Debnath","doi":"10.18006/2023.11(4).683.695","DOIUrl":null,"url":null,"abstract":"Differential expression of isozymes enables fish to tolerate temperature fluctuations in their environment. The present study explores the modulation of lactate dehydrogenase (LDH) and cytoplasmic malate dehydrogenase (sMDH) isozyme expression in the heart, muscle, brain, liver, gill, and kidney of juvenile Horabagrus brachysoma after 30 days of acclimation at 26, 31, 33, and 36°C. LDH and sMDH zymography were performed using native polyacrylamide gel electrophoresis. The zymography revealed five distinct bands of LDH isoenzymes (labelled from cathode to anode as LDH-A4, LDH-A3B1, LDH-A2B2, LDH-A1B3, and LDH-B4) and three distinct bands of sMDH isoenzymes (labelled from cathode to anode as sMDH-A2, sMDH-AB, and sMDH-B2), with considerable variation in their expression in the tissues. Acclimation to the test temperatures did not influence the expression patterns of LDH or sMDH isozymes. Densitometric analysis of individual isozyme bands revealed a reduction in the densities of bands containing the LDH-B and sMDH-B molecules, while the densities of bands containing the LDH-A and sMDH-A molecules increased in the gills and muscle, indicating the role of these organs in adaptive responses to thermal acclimation. However, the total densities of the LDH and sMDH isozymes increased with higher acclimation temperatures, indicating that adaptation to increased temperatures in H. brachysoma is primarily characterised by quantitative changes in isozyme expression.","PeriodicalId":15766,"journal":{"name":"Journal of Experimental Biology and Agricultural Sciences","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acclimation to warm temperatures modulates lactate and malate dehydrogenase isozymes in juvenile Horabagrus brachysoma (Günther)\",\"authors\":\"Rishikesh S. Dalvi, Asim K. Pal, Dipesh Debnath\",\"doi\":\"10.18006/2023.11(4).683.695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Differential expression of isozymes enables fish to tolerate temperature fluctuations in their environment. The present study explores the modulation of lactate dehydrogenase (LDH) and cytoplasmic malate dehydrogenase (sMDH) isozyme expression in the heart, muscle, brain, liver, gill, and kidney of juvenile Horabagrus brachysoma after 30 days of acclimation at 26, 31, 33, and 36°C. LDH and sMDH zymography were performed using native polyacrylamide gel electrophoresis. The zymography revealed five distinct bands of LDH isoenzymes (labelled from cathode to anode as LDH-A4, LDH-A3B1, LDH-A2B2, LDH-A1B3, and LDH-B4) and three distinct bands of sMDH isoenzymes (labelled from cathode to anode as sMDH-A2, sMDH-AB, and sMDH-B2), with considerable variation in their expression in the tissues. Acclimation to the test temperatures did not influence the expression patterns of LDH or sMDH isozymes. Densitometric analysis of individual isozyme bands revealed a reduction in the densities of bands containing the LDH-B and sMDH-B molecules, while the densities of bands containing the LDH-A and sMDH-A molecules increased in the gills and muscle, indicating the role of these organs in adaptive responses to thermal acclimation. However, the total densities of the LDH and sMDH isozymes increased with higher acclimation temperatures, indicating that adaptation to increased temperatures in H. brachysoma is primarily characterised by quantitative changes in isozyme expression.\",\"PeriodicalId\":15766,\"journal\":{\"name\":\"Journal of Experimental Biology and Agricultural Sciences\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Biology and Agricultural Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18006/2023.11(4).683.695\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Veterinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Biology and Agricultural Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18006/2023.11(4).683.695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Veterinary","Score":null,"Total":0}
引用次数: 0

摘要

同工酶的差异表达使鱼类能够忍受环境中的温度波动。本研究探讨了在26、31、33和36°C环境下驯化30天后,幼鱼Horabagrus brachysoma心脏、肌肉、脑、肝脏、鳃和肾脏中乳酸脱氢酶(LDH)和细胞质苹果酸脱氢酶(sMDH)同工酶表达的变化。采用天然聚丙烯酰胺凝胶电泳进行LDH和sMDH酶谱分析。酶谱分析显示,LDH同工酶有5个不同的谱带(从阴极到阳极标记为LDH- a4、LDH- a3b1、LDH- a2b2、LDH- a1b3和LDH- b4), sMDH同工酶有3个不同的谱带(从阴极到阳极标记为sMDH- a2、sMDH- ab和sMDH- b2),它们在组织中的表达差异很大。驯化温度不影响LDH和sMDH同工酶的表达模式。对单个同工酶条带的密度分析显示,含有LDH-B和sMDH-B分子的条带密度降低,而含有LDH-A和sMDH-A分子的条带密度在鳃和肌肉中增加,表明这些器官在热驯化的适应性反应中起作用。然而,LDH和sMDH同工酶的总密度随着驯化温度的升高而增加,这表明短苞假体对温度升高的适应主要表现在同工酶表达的数量变化上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Acclimation to warm temperatures modulates lactate and malate dehydrogenase isozymes in juvenile Horabagrus brachysoma (Günther)
Differential expression of isozymes enables fish to tolerate temperature fluctuations in their environment. The present study explores the modulation of lactate dehydrogenase (LDH) and cytoplasmic malate dehydrogenase (sMDH) isozyme expression in the heart, muscle, brain, liver, gill, and kidney of juvenile Horabagrus brachysoma after 30 days of acclimation at 26, 31, 33, and 36°C. LDH and sMDH zymography were performed using native polyacrylamide gel electrophoresis. The zymography revealed five distinct bands of LDH isoenzymes (labelled from cathode to anode as LDH-A4, LDH-A3B1, LDH-A2B2, LDH-A1B3, and LDH-B4) and three distinct bands of sMDH isoenzymes (labelled from cathode to anode as sMDH-A2, sMDH-AB, and sMDH-B2), with considerable variation in their expression in the tissues. Acclimation to the test temperatures did not influence the expression patterns of LDH or sMDH isozymes. Densitometric analysis of individual isozyme bands revealed a reduction in the densities of bands containing the LDH-B and sMDH-B molecules, while the densities of bands containing the LDH-A and sMDH-A molecules increased in the gills and muscle, indicating the role of these organs in adaptive responses to thermal acclimation. However, the total densities of the LDH and sMDH isozymes increased with higher acclimation temperatures, indicating that adaptation to increased temperatures in H. brachysoma is primarily characterised by quantitative changes in isozyme expression.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Experimental Biology and Agricultural Sciences
Journal of Experimental Biology and Agricultural Sciences Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
CiteScore
1.00
自引率
0.00%
发文量
127
期刊最新文献
Assess the antioxidant and antimicrobial activity of herbal popsicles prepared by Hibiscus sabdariffa L. and Clitorea ternatea floral waste HPLC based Phytochemicals Analysis of Phyllanthus emblica (Indian Gooseberry/Amla): A mini Review Exploring the Impact of Micro-plastics on Soil Health and Ecosystem Dynamics: A Comprehensive Review Potential effect of fruit and flower extracts of Arbutus unedo L. on Tetrahymena pyriformis exposed to a cobalt-60 source AN ASSESSMENT OF PESTICIDE POISONING INCIDENCES PRESENTED AT HEALTH CARE FACILITIES IN MASHONALAND CENTRAL PROVINCE, ZIMBABWE
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1