Hanchuan Wu, Maziar Veyskarami, Martin Schneider, Rainer Helmig
{"title":"利用正则化策略建立新的完全隐式两相孔隙网络模型","authors":"Hanchuan Wu, Maziar Veyskarami, Martin Schneider, Rainer Helmig","doi":"10.1007/s11242-023-02031-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we address the expensive computational cost resulting from limited time-step sizes during numerical simulations of two-phase flow in porous media using dynamic pore-network models. To overcome this issue, we propose a numerical method for dynamic pore-network models using a fully implicit approach. The proposed method introduces a regularization strategy considering the historical fluid configuration at the pore throat, which smooths the discontinuities in local conductivity caused by invasion and snap-off events. The results demonstrate the superiority of the proposed method in terms of accuracy, efficiency and consistency in comparison with other numerical schemes. With similar computational cost, determined by time-step sizes and number of Newton iterations, the developed method in this work yields more accurate results compared to similar schemes presented in the literature. Additionally, our results highlight the enhanced robustness of the our scheme, as it exhibits reduced sensitivity to variations in time-step sizes.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11242-023-02031-2.pdf","citationCount":"0","resultStr":"{\"title\":\"A New Fully Implicit Two-Phase Pore-Network Model by Utilizing Regularization Strategies\",\"authors\":\"Hanchuan Wu, Maziar Veyskarami, Martin Schneider, Rainer Helmig\",\"doi\":\"10.1007/s11242-023-02031-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we address the expensive computational cost resulting from limited time-step sizes during numerical simulations of two-phase flow in porous media using dynamic pore-network models. To overcome this issue, we propose a numerical method for dynamic pore-network models using a fully implicit approach. The proposed method introduces a regularization strategy considering the historical fluid configuration at the pore throat, which smooths the discontinuities in local conductivity caused by invasion and snap-off events. The results demonstrate the superiority of the proposed method in terms of accuracy, efficiency and consistency in comparison with other numerical schemes. With similar computational cost, determined by time-step sizes and number of Newton iterations, the developed method in this work yields more accurate results compared to similar schemes presented in the literature. Additionally, our results highlight the enhanced robustness of the our scheme, as it exhibits reduced sensitivity to variations in time-step sizes.</p></div>\",\"PeriodicalId\":804,\"journal\":{\"name\":\"Transport in Porous Media\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11242-023-02031-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transport in Porous Media\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11242-023-02031-2\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport in Porous Media","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11242-023-02031-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
A New Fully Implicit Two-Phase Pore-Network Model by Utilizing Regularization Strategies
In this paper, we address the expensive computational cost resulting from limited time-step sizes during numerical simulations of two-phase flow in porous media using dynamic pore-network models. To overcome this issue, we propose a numerical method for dynamic pore-network models using a fully implicit approach. The proposed method introduces a regularization strategy considering the historical fluid configuration at the pore throat, which smooths the discontinuities in local conductivity caused by invasion and snap-off events. The results demonstrate the superiority of the proposed method in terms of accuracy, efficiency and consistency in comparison with other numerical schemes. With similar computational cost, determined by time-step sizes and number of Newton iterations, the developed method in this work yields more accurate results compared to similar schemes presented in the literature. Additionally, our results highlight the enhanced robustness of the our scheme, as it exhibits reduced sensitivity to variations in time-step sizes.
期刊介绍:
-Publishes original research on physical, chemical, and biological aspects of transport in porous media-
Papers on porous media research may originate in various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering)-
Emphasizes theory, (numerical) modelling, laboratory work, and non-routine applications-
Publishes work of a fundamental nature, of interest to a wide readership, that provides novel insight into porous media processes-
Expanded in 2007 from 12 to 15 issues per year.
Transport in Porous Media publishes original research on physical and chemical aspects of transport phenomena in rigid and deformable porous media. These phenomena, occurring in single and multiphase flow in porous domains, can be governed by extensive quantities such as mass of a fluid phase, mass of component of a phase, momentum, or energy. Moreover, porous medium deformations can be induced by the transport phenomena, by chemical and electro-chemical activities such as swelling, or by external loading through forces and displacements. These porous media phenomena may be studied by researchers from various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering).