贝内迪克蒂链尾虫汊的发育和性双态性

IF 1.3 4区 生物学 Q3 MARINE & FRESHWATER BIOLOGY Invertebrate Biology Pub Date : 2023-10-17 DOI:10.1111/ivb.12412
Caitlin Segarra, Elizabeth R. McCain
{"title":"贝内迪克蒂链尾虫汊的发育和性双态性","authors":"Caitlin Segarra,&nbsp;Elizabeth R. McCain","doi":"10.1111/ivb.12412","DOIUrl":null,"url":null,"abstract":"<p>The Spionidae is one of the largest and most studied annelid families, but to date, the development and differentiation of post-metamorphic anatomy have not been documented. This study used scanning electron microscopy to examine the development of the branchiae, presumed respiratory organs, in <i>Streblospio benedicti</i>. Branchiae in this species are prominent, paired head structures and first appear around the time of metamorphosis, but do not complete their development until the worm reaches the older juvenile or adult stages. We observed that as the branchiae grew, their overall morphology changed through four different shapes: small bud, tubular, tapered, and, finally, bilimbate. In addition, the abfrontal and frontal surfaces each possessed a unique set of cilia patterns, which we named, and these arose in a particular sequence between the 8- and 35-chaetiger stages. This detailed examination of every stage of branchial development led us to discover that branchia in <i>Streblospio benedicti</i> was a sexually dimorphic organ. <i>Streblospio benedicti</i> is one of approximately eight Spionidae in which there is any type of structural sexual dimorphism, and it is the only species in which sexually dimorphic branchiae are found. The male's frontal surface had four unique cilia patterns, and we hypothesize that those located around the medial protrusion capture and control the release of the spermatophores. This first documentation of a spionid's branchial developmental sequence revealed that not only is this respiratory organ involved in reproduction, but it significantly differentiates after metamorphosis through adulthood.</p>","PeriodicalId":54923,"journal":{"name":"Invertebrate Biology","volume":"142 4","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and sexual dimorphism of branchiae in Streblospio benedicti\",\"authors\":\"Caitlin Segarra,&nbsp;Elizabeth R. McCain\",\"doi\":\"10.1111/ivb.12412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Spionidae is one of the largest and most studied annelid families, but to date, the development and differentiation of post-metamorphic anatomy have not been documented. This study used scanning electron microscopy to examine the development of the branchiae, presumed respiratory organs, in <i>Streblospio benedicti</i>. Branchiae in this species are prominent, paired head structures and first appear around the time of metamorphosis, but do not complete their development until the worm reaches the older juvenile or adult stages. We observed that as the branchiae grew, their overall morphology changed through four different shapes: small bud, tubular, tapered, and, finally, bilimbate. In addition, the abfrontal and frontal surfaces each possessed a unique set of cilia patterns, which we named, and these arose in a particular sequence between the 8- and 35-chaetiger stages. This detailed examination of every stage of branchial development led us to discover that branchia in <i>Streblospio benedicti</i> was a sexually dimorphic organ. <i>Streblospio benedicti</i> is one of approximately eight Spionidae in which there is any type of structural sexual dimorphism, and it is the only species in which sexually dimorphic branchiae are found. The male's frontal surface had four unique cilia patterns, and we hypothesize that those located around the medial protrusion capture and control the release of the spermatophores. This first documentation of a spionid's branchial developmental sequence revealed that not only is this respiratory organ involved in reproduction, but it significantly differentiates after metamorphosis through adulthood.</p>\",\"PeriodicalId\":54923,\"journal\":{\"name\":\"Invertebrate Biology\",\"volume\":\"142 4\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Invertebrate Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ivb.12412\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Invertebrate Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ivb.12412","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

匙吻鲟科(Spionidae)是体型最大、研究最多的无脊椎动物科之一,但迄今为止,其变态后解剖结构的发育和分化尚未被记录下来。本研究利用扫描电子显微镜检查了 Streblospio benedicti 的分支器(推测为呼吸器官)的发育情况。该物种的支节是突出的成对头部结构,在变态前后首次出现,但直到幼虫或成虫阶段才发育完成。我们观察到,随着鳃瓣的生长,它们的整体形态发生了四种不同的变化:小芽形、管状、锥形以及最后的双叶形。此外,额叶和额叶表面各有一套独特的纤毛模式,我们将其命名为 "纤毛模式",这些纤毛模式是在 8 月龄到 35 月龄之间按特定顺序出现的。通过对小枝发育各个阶段的详细研究,我们发现苯氏链蛙的小枝是一种性二态器官。Streblospio benedicti是大约8种存在任何结构性二态的匙吻鲟科动物之一,也是唯一一种发现有性二态小枝的物种。雄性的前额表面有四种独特的纤毛模式,我们推测位于内侧突起周围的纤毛可以捕捉和控制精子的释放。这是对脊索动物分支发育序列的首次记录,揭示了这一呼吸器官不仅参与繁殖,而且在变态后到成年期有显著的分化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development and sexual dimorphism of branchiae in Streblospio benedicti

The Spionidae is one of the largest and most studied annelid families, but to date, the development and differentiation of post-metamorphic anatomy have not been documented. This study used scanning electron microscopy to examine the development of the branchiae, presumed respiratory organs, in Streblospio benedicti. Branchiae in this species are prominent, paired head structures and first appear around the time of metamorphosis, but do not complete their development until the worm reaches the older juvenile or adult stages. We observed that as the branchiae grew, their overall morphology changed through four different shapes: small bud, tubular, tapered, and, finally, bilimbate. In addition, the abfrontal and frontal surfaces each possessed a unique set of cilia patterns, which we named, and these arose in a particular sequence between the 8- and 35-chaetiger stages. This detailed examination of every stage of branchial development led us to discover that branchia in Streblospio benedicti was a sexually dimorphic organ. Streblospio benedicti is one of approximately eight Spionidae in which there is any type of structural sexual dimorphism, and it is the only species in which sexually dimorphic branchiae are found. The male's frontal surface had four unique cilia patterns, and we hypothesize that those located around the medial protrusion capture and control the release of the spermatophores. This first documentation of a spionid's branchial developmental sequence revealed that not only is this respiratory organ involved in reproduction, but it significantly differentiates after metamorphosis through adulthood.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Invertebrate Biology
Invertebrate Biology 生物-动物学
CiteScore
2.20
自引率
8.30%
发文量
28
审稿时长
>12 weeks
期刊介绍: Invertebrate Biology presents fundamental advances in our understanding of the structure, function, ecology, and evolution of the invertebrates, which represent the vast majority of animal diversity. Though ultimately organismal in focus, the journal publishes manuscripts addressing phenomena at all levels of biological organization. Invertebrate Biology welcomes manuscripts addressing the biology of invertebrates from diverse perspectives, including those of: • genetics, cell, and molecular biology • morphology and biomechanics • reproduction and development • physiology and behavior • ecology • evolution and phylogenetics
期刊最新文献
Issue Information Feeding strategies and habits of the coral guard-crab Trapezia bidentata Comparative demography of two wild cladoceran species, Alona quadrangularis and Scapholeberis mucronata, collected in western Washington state and reared under laboratory conditions Ex situ spawning, larval development, and settlement in massive reef-building corals (Porites) in Palau Shedding light on some dark branches: The under-appreciated diversity of gymnosome pteropods and their coiled thecosome prey in the Neotropics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1