Alan Ma, Alex Cui, Zahra Hajati, Maya Evenden, Jaime G. Wong
{"title":"通过飞行磨校准估算飞行中的力","authors":"Alan Ma, Alex Cui, Zahra Hajati, Maya Evenden, Jaime G. Wong","doi":"10.1111/phen.12422","DOIUrl":null,"url":null,"abstract":"<p>The study of insect flight is important for conservation and sustainability efforts, as predicting insect dispersal can aid management programmes in tackling economic and ecological harm from, for example, invasive species. Flight mills are invaluable tools for measuring the factors of insect flight under laboratory conditions, as they lower several technical and financial barriers to conduct experiments. It is especially difficult, however, to make assumptions about the energetic cost of tethered flights conducted using different tethers, or even on different flight mills, due to the mechanical variability of the bearing friction and air resistance of the rotating assembly. This additional uncertainty necessitates a larger number of replicates for any given standard of statistical confidence. By characterising flight mill friction, this uncertainty can both be reduced in magnitude and assigned a specific, well-defined numerical value. We present a simple methodology to characterise this friction through dynamic calibration of the flight mill, at a high statistical confidence. This study uses videography of a flight mill undergoing free velocity decay due to friction, using an in-house developed software to extract angular velocity from video data. However, the technique is readily adaptable to other measurement techniques. Using the velocity, alongside the mass moment of inertia of the flight mill, allows us to determine the rotational friction coefficient. This friction coefficient provides precise measurements of thrust production, and therefore the energy expenditure of flight, by the tethered insect.</p>","PeriodicalId":20081,"journal":{"name":"Physiological Entomology","volume":"49 1","pages":"14-22"},"PeriodicalIF":1.6000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/phen.12422","citationCount":"0","resultStr":"{\"title\":\"In-flight force estimation by flight mill calibration\",\"authors\":\"Alan Ma, Alex Cui, Zahra Hajati, Maya Evenden, Jaime G. Wong\",\"doi\":\"10.1111/phen.12422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The study of insect flight is important for conservation and sustainability efforts, as predicting insect dispersal can aid management programmes in tackling economic and ecological harm from, for example, invasive species. Flight mills are invaluable tools for measuring the factors of insect flight under laboratory conditions, as they lower several technical and financial barriers to conduct experiments. It is especially difficult, however, to make assumptions about the energetic cost of tethered flights conducted using different tethers, or even on different flight mills, due to the mechanical variability of the bearing friction and air resistance of the rotating assembly. This additional uncertainty necessitates a larger number of replicates for any given standard of statistical confidence. By characterising flight mill friction, this uncertainty can both be reduced in magnitude and assigned a specific, well-defined numerical value. We present a simple methodology to characterise this friction through dynamic calibration of the flight mill, at a high statistical confidence. This study uses videography of a flight mill undergoing free velocity decay due to friction, using an in-house developed software to extract angular velocity from video data. However, the technique is readily adaptable to other measurement techniques. Using the velocity, alongside the mass moment of inertia of the flight mill, allows us to determine the rotational friction coefficient. This friction coefficient provides precise measurements of thrust production, and therefore the energy expenditure of flight, by the tethered insect.</p>\",\"PeriodicalId\":20081,\"journal\":{\"name\":\"Physiological Entomology\",\"volume\":\"49 1\",\"pages\":\"14-22\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/phen.12422\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological Entomology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/phen.12422\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological Entomology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/phen.12422","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
In-flight force estimation by flight mill calibration
The study of insect flight is important for conservation and sustainability efforts, as predicting insect dispersal can aid management programmes in tackling economic and ecological harm from, for example, invasive species. Flight mills are invaluable tools for measuring the factors of insect flight under laboratory conditions, as they lower several technical and financial barriers to conduct experiments. It is especially difficult, however, to make assumptions about the energetic cost of tethered flights conducted using different tethers, or even on different flight mills, due to the mechanical variability of the bearing friction and air resistance of the rotating assembly. This additional uncertainty necessitates a larger number of replicates for any given standard of statistical confidence. By characterising flight mill friction, this uncertainty can both be reduced in magnitude and assigned a specific, well-defined numerical value. We present a simple methodology to characterise this friction through dynamic calibration of the flight mill, at a high statistical confidence. This study uses videography of a flight mill undergoing free velocity decay due to friction, using an in-house developed software to extract angular velocity from video data. However, the technique is readily adaptable to other measurement techniques. Using the velocity, alongside the mass moment of inertia of the flight mill, allows us to determine the rotational friction coefficient. This friction coefficient provides precise measurements of thrust production, and therefore the energy expenditure of flight, by the tethered insect.
期刊介绍:
Physiological Entomology broadly considers “how insects work” and how they are adapted to their environments at all levels from genes and molecules, anatomy and structure, to behaviour and interactions of whole organisms. We publish high quality experiment based papers reporting research on insects and other arthropods as well as occasional reviews. The journal thus has a focus on physiological and experimental approaches to understanding how insects function. The broad subject coverage of the Journal includes, but is not limited to:
-experimental analysis of behaviour-
behavioural physiology and biochemistry-
neurobiology and sensory physiology-
general physiology-
circadian rhythms and photoperiodism-
chemical ecology