{"title":"高性能纳米复合材料中的石墨烯量子点——设计成神奇的进展","authors":"Ayesha Kausar, Ishaq Ahmad","doi":"10.1080/14328917.2023.2267362","DOIUrl":null,"url":null,"abstract":"ABSTRACTThis comprehensive and novel article covers an important category of nanocomposites, i.e. polymer and graphene quantum dots derived nanocomposites. Graphene quantum dots have been found as remarkable zero-dimensional derivative of graphene having size of up to 20 nm. Similar to graphene, graphene quantum dots have been applied as beneficial nano-reinforcement for the polymers. In this context, various conductive polymers (polypyrrole, polyaniline, polythiophene, etc.) and thermoplastic polymers (poly(vinyl alcohol), poly(vinyl fluoride), etc.) have been used as matrices. Inclusion of graphene quantum dots in matrices have revealed superior structure, morphological, electronic, optical, photoluminescence, and several other advantageous physical characteristics. Important application areas of polymer/graphene quantum dots nanomaterials have been observed for solar cells, sensors, supercapacitors, batteries, memory devices, and bioimaging. However, further research efforts have been desirable regarding the graphene quantum dots modification and exploration of new graphene quantum dots derived nanocomposite designs and applied sectors as well as overcoming the related challenges for future progressions in this important category of nanocomposites.KEYWORDS: Graphene quantum dotsconductive polymernanocompositessensorsolar cell Disclosure statementNo potential conflict of interest was reported by the authors.","PeriodicalId":18235,"journal":{"name":"Materials Research Innovations","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graphene quantum dots in high performance nanocomposites—design to phantastic progressions\",\"authors\":\"Ayesha Kausar, Ishaq Ahmad\",\"doi\":\"10.1080/14328917.2023.2267362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACTThis comprehensive and novel article covers an important category of nanocomposites, i.e. polymer and graphene quantum dots derived nanocomposites. Graphene quantum dots have been found as remarkable zero-dimensional derivative of graphene having size of up to 20 nm. Similar to graphene, graphene quantum dots have been applied as beneficial nano-reinforcement for the polymers. In this context, various conductive polymers (polypyrrole, polyaniline, polythiophene, etc.) and thermoplastic polymers (poly(vinyl alcohol), poly(vinyl fluoride), etc.) have been used as matrices. Inclusion of graphene quantum dots in matrices have revealed superior structure, morphological, electronic, optical, photoluminescence, and several other advantageous physical characteristics. Important application areas of polymer/graphene quantum dots nanomaterials have been observed for solar cells, sensors, supercapacitors, batteries, memory devices, and bioimaging. However, further research efforts have been desirable regarding the graphene quantum dots modification and exploration of new graphene quantum dots derived nanocomposite designs and applied sectors as well as overcoming the related challenges for future progressions in this important category of nanocomposites.KEYWORDS: Graphene quantum dotsconductive polymernanocompositessensorsolar cell Disclosure statementNo potential conflict of interest was reported by the authors.\",\"PeriodicalId\":18235,\"journal\":{\"name\":\"Materials Research Innovations\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Innovations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/14328917.2023.2267362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Innovations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/14328917.2023.2267362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Graphene quantum dots in high performance nanocomposites—design to phantastic progressions
ABSTRACTThis comprehensive and novel article covers an important category of nanocomposites, i.e. polymer and graphene quantum dots derived nanocomposites. Graphene quantum dots have been found as remarkable zero-dimensional derivative of graphene having size of up to 20 nm. Similar to graphene, graphene quantum dots have been applied as beneficial nano-reinforcement for the polymers. In this context, various conductive polymers (polypyrrole, polyaniline, polythiophene, etc.) and thermoplastic polymers (poly(vinyl alcohol), poly(vinyl fluoride), etc.) have been used as matrices. Inclusion of graphene quantum dots in matrices have revealed superior structure, morphological, electronic, optical, photoluminescence, and several other advantageous physical characteristics. Important application areas of polymer/graphene quantum dots nanomaterials have been observed for solar cells, sensors, supercapacitors, batteries, memory devices, and bioimaging. However, further research efforts have been desirable regarding the graphene quantum dots modification and exploration of new graphene quantum dots derived nanocomposite designs and applied sectors as well as overcoming the related challenges for future progressions in this important category of nanocomposites.KEYWORDS: Graphene quantum dotsconductive polymernanocompositessensorsolar cell Disclosure statementNo potential conflict of interest was reported by the authors.
期刊介绍:
Materials Research Innovations covers all areas of materials research with a particular interest in synthesis, processing, and properties from the nanoscale to the microscale to the bulk. Coverage includes all classes of material – ceramics, metals, and polymers; semiconductors and other functional materials; organic and inorganic materials – alone or in combination as composites. Innovation in composition and processing to impart special properties to bulk materials and coatings, and for innovative applications in technology, represents a strong focus. The journal attempts to balance enduring themes of science and engineering with the innovation provided by such areas of research activity.