{"title":"强X射线能使束缚电子自由","authors":"Rachel Berkowitz","doi":"10.1103/physics.16.s142","DOIUrl":null,"url":null,"abstract":"T he x-ray free-electron laser (XFEL) is a revolutionary tool for investigating light–matter interactions. The quick-fire pulses of high-energy radiation used in this tool can capture a fast succession of snapshots of a material’s atoms, revealing the fine-scale, three-dimensional details of atomic movements without destroying a sample. Still, the intense irradiation of an XFEL has the potential to alter both the electronic and atomic configurations of a material, which complicates the determination of a solid’s structure. Now Ichiro Inoue of RIKEN in Japan and his colleagues have pinpointed when and how an XFEL’s pulses alter the crystal structures they are designed to reveal [1]. The results could help resolve limitations of the technology and could be used to improve accuracy in future XFEL imaging.","PeriodicalId":20136,"journal":{"name":"Physics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intense X Rays Can Free Bound Electrons\",\"authors\":\"Rachel Berkowitz\",\"doi\":\"10.1103/physics.16.s142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"T he x-ray free-electron laser (XFEL) is a revolutionary tool for investigating light–matter interactions. The quick-fire pulses of high-energy radiation used in this tool can capture a fast succession of snapshots of a material’s atoms, revealing the fine-scale, three-dimensional details of atomic movements without destroying a sample. Still, the intense irradiation of an XFEL has the potential to alter both the electronic and atomic configurations of a material, which complicates the determination of a solid’s structure. Now Ichiro Inoue of RIKEN in Japan and his colleagues have pinpointed when and how an XFEL’s pulses alter the crystal structures they are designed to reveal [1]. The results could help resolve limitations of the technology and could be used to improve accuracy in future XFEL imaging.\",\"PeriodicalId\":20136,\"journal\":{\"name\":\"Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physics.16.s142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physics.16.s142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
T he x-ray free-electron laser (XFEL) is a revolutionary tool for investigating light–matter interactions. The quick-fire pulses of high-energy radiation used in this tool can capture a fast succession of snapshots of a material’s atoms, revealing the fine-scale, three-dimensional details of atomic movements without destroying a sample. Still, the intense irradiation of an XFEL has the potential to alter both the electronic and atomic configurations of a material, which complicates the determination of a solid’s structure. Now Ichiro Inoue of RIKEN in Japan and his colleagues have pinpointed when and how an XFEL’s pulses alter the crystal structures they are designed to reveal [1]. The results could help resolve limitations of the technology and could be used to improve accuracy in future XFEL imaging.