{"title":"基于混沌图的不完整和非 IID 数据集隐私保护分布式深度学习","authors":"Irina Arévalo;Jose L. Salmeron","doi":"10.1109/TETC.2023.3320758","DOIUrl":null,"url":null,"abstract":"Federated Learning is a machine learning approach that enables the training of a deep learning model among several participants with sensitive data that wish to share their own knowledge without compromising the privacy of their data. In this research, the authors employ a secured Federated Learning method with an additional layer of privacy and proposes a method for addressing the non-IID challenge. Moreover, differential privacy is compared with chaotic-based encryption as layer of privacy. The experimental approach assesses the performance of the federated deep learning model with differential privacy using both IID and non-IID data. In each experiment, the Federated Learning process improves the average performance metrics of the deep neural network, even in the case of non-IID data.","PeriodicalId":13156,"journal":{"name":"IEEE Transactions on Emerging Topics in Computing","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Chaotic Maps-Based Privacy-Preserving Distributed Deep Learning for Incomplete and Non-IID Datasets\",\"authors\":\"Irina Arévalo;Jose L. Salmeron\",\"doi\":\"10.1109/TETC.2023.3320758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Federated Learning is a machine learning approach that enables the training of a deep learning model among several participants with sensitive data that wish to share their own knowledge without compromising the privacy of their data. In this research, the authors employ a secured Federated Learning method with an additional layer of privacy and proposes a method for addressing the non-IID challenge. Moreover, differential privacy is compared with chaotic-based encryption as layer of privacy. The experimental approach assesses the performance of the federated deep learning model with differential privacy using both IID and non-IID data. In each experiment, the Federated Learning process improves the average performance metrics of the deep neural network, even in the case of non-IID data.\",\"PeriodicalId\":13156,\"journal\":{\"name\":\"IEEE Transactions on Emerging Topics in Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Emerging Topics in Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10273198/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10273198/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A Chaotic Maps-Based Privacy-Preserving Distributed Deep Learning for Incomplete and Non-IID Datasets
Federated Learning is a machine learning approach that enables the training of a deep learning model among several participants with sensitive data that wish to share their own knowledge without compromising the privacy of their data. In this research, the authors employ a secured Federated Learning method with an additional layer of privacy and proposes a method for addressing the non-IID challenge. Moreover, differential privacy is compared with chaotic-based encryption as layer of privacy. The experimental approach assesses the performance of the federated deep learning model with differential privacy using both IID and non-IID data. In each experiment, the Federated Learning process improves the average performance metrics of the deep neural network, even in the case of non-IID data.
期刊介绍:
IEEE Transactions on Emerging Topics in Computing publishes papers on emerging aspects of computer science, computing technology, and computing applications not currently covered by other IEEE Computer Society Transactions. Some examples of emerging topics in computing include: IT for Green, Synthetic and organic computing structures and systems, Advanced analytics, Social/occupational computing, Location-based/client computer systems, Morphic computer design, Electronic game systems, & Health-care IT.