双延迟深度确定性强化学习在汽车悬架控制中的应用

Daoyu Shen, Shilei Zhou, Nong Zhang
{"title":"双延迟深度确定性强化学习在汽车悬架控制中的应用","authors":"Daoyu Shen, Shilei Zhou, Nong Zhang","doi":"10.1504/ijvp.2023.133852","DOIUrl":null,"url":null,"abstract":"Coming with the rising focus of the driving comfort request, more efforts are being delivered into the study of suspension system. Comparing with other traditional control methods, the machine learning control strategy has demonstrated its optimality in dealing with different class of roads. The work presented in this paper is to apply twin delayed deep deterministic policy gradients (TD3) in suspension control which enables suspension controller to go beyond searching for an optimal set of system parameters from traditional control method in dealing with different class of pavements. To achieve this, a suspension model has been established together with a reinforcement learning algorithm and an input signal of pavement. The performance of the twin delayed reinforcement agent is compared against deep deterministic policy gradients (DDPG) and deep Q-learning (DQN) algorithms under different types of pavement. The simulation result shows its superiority, robustness and learning efficiency over other reinforcement learning algorithms.","PeriodicalId":52169,"journal":{"name":"International Journal of Vehicle Performance","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Twin delayed deep deterministic reinforcement learning application in vehicle electrical suspension control\",\"authors\":\"Daoyu Shen, Shilei Zhou, Nong Zhang\",\"doi\":\"10.1504/ijvp.2023.133852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coming with the rising focus of the driving comfort request, more efforts are being delivered into the study of suspension system. Comparing with other traditional control methods, the machine learning control strategy has demonstrated its optimality in dealing with different class of roads. The work presented in this paper is to apply twin delayed deep deterministic policy gradients (TD3) in suspension control which enables suspension controller to go beyond searching for an optimal set of system parameters from traditional control method in dealing with different class of pavements. To achieve this, a suspension model has been established together with a reinforcement learning algorithm and an input signal of pavement. The performance of the twin delayed reinforcement agent is compared against deep deterministic policy gradients (DDPG) and deep Q-learning (DQN) algorithms under different types of pavement. The simulation result shows its superiority, robustness and learning efficiency over other reinforcement learning algorithms.\",\"PeriodicalId\":52169,\"journal\":{\"name\":\"International Journal of Vehicle Performance\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Vehicle Performance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijvp.2023.133852\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicle Performance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijvp.2023.133852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

随着人们对驾驶舒适性要求的日益关注,人们对悬架系统的研究投入了更多的精力。与其他传统控制方法相比,机器学习控制策略在处理不同类型道路时表现出了最优性。本文的工作是将双延迟深度确定性策略梯度(TD3)应用于悬架控制,使悬架控制器在处理不同类型的路面时,能够超越传统控制方法对系统参数的最优集的搜索。为了实现这一目标,建立了悬架模型,并采用强化学习算法和路面输入信号。将双延迟补强剂与深度确定性策略梯度(DDPG)和深度q -学习(DQN)算法在不同路面类型下的性能进行了比较。仿真结果表明了该算法的优越性、鲁棒性和学习效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Twin delayed deep deterministic reinforcement learning application in vehicle electrical suspension control
Coming with the rising focus of the driving comfort request, more efforts are being delivered into the study of suspension system. Comparing with other traditional control methods, the machine learning control strategy has demonstrated its optimality in dealing with different class of roads. The work presented in this paper is to apply twin delayed deep deterministic policy gradients (TD3) in suspension control which enables suspension controller to go beyond searching for an optimal set of system parameters from traditional control method in dealing with different class of pavements. To achieve this, a suspension model has been established together with a reinforcement learning algorithm and an input signal of pavement. The performance of the twin delayed reinforcement agent is compared against deep deterministic policy gradients (DDPG) and deep Q-learning (DQN) algorithms under different types of pavement. The simulation result shows its superiority, robustness and learning efficiency over other reinforcement learning algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Vehicle Performance
International Journal of Vehicle Performance Engineering-Safety, Risk, Reliability and Quality
CiteScore
2.20
自引率
0.00%
发文量
30
期刊最新文献
Six-sigma robust design optimisation of an electric bus considering crashworthiness and lightweight Analytical model for combined ride and handling with leaf spring suspension in commercial vehicles Shifting control optimisation of automatic transmission with congested conditions identification based on the support vector machine Dual evaporator system as an alternative for air-conditioning and refrigeration in automobiles Performance analysis of automotive exhaust muffler characteristics integrating supervised machine learning algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1