基于Coyote优化算法的有理模型复合迭代算法

IF 1.2 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY Pub Date : 2023-01-01 DOI:10.1504/ijcat.2023.133881
Fei Xu, Jing Chen, Xia Yin
{"title":"基于Coyote优化算法的有理模型复合迭代算法","authors":"Fei Xu, Jing Chen, Xia Yin","doi":"10.1504/ijcat.2023.133881","DOIUrl":null,"url":null,"abstract":"This article proposes a Coyote Optimisation Compound Iterative Algorithm (CO-CIA) for rational models. Particularly, the parameters in the numerator and denominator of rational models make the derivative equation hard to solve. To deal with this problem, the Coyote Optimisation Algorithm (COA) is applied to estimate the parameters in the denominator. Compared with the Bias Compensation-based Least Squares (BCLS) algorithm and the Particle Swarm Optimisation Compound Iterative Algorithm (PSO-CIA), the proposed method has higher accuracy and faster convergence rates. Finally, a simulation example is utilised to verify the effectiveness of the proposed algorithm.","PeriodicalId":46624,"journal":{"name":"INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The compound iterative algorithm for rational models based on the Coyote optimisation algorithm\",\"authors\":\"Fei Xu, Jing Chen, Xia Yin\",\"doi\":\"10.1504/ijcat.2023.133881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes a Coyote Optimisation Compound Iterative Algorithm (CO-CIA) for rational models. Particularly, the parameters in the numerator and denominator of rational models make the derivative equation hard to solve. To deal with this problem, the Coyote Optimisation Algorithm (COA) is applied to estimate the parameters in the denominator. Compared with the Bias Compensation-based Least Squares (BCLS) algorithm and the Particle Swarm Optimisation Compound Iterative Algorithm (PSO-CIA), the proposed method has higher accuracy and faster convergence rates. Finally, a simulation example is utilised to verify the effectiveness of the proposed algorithm.\",\"PeriodicalId\":46624,\"journal\":{\"name\":\"INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijcat.2023.133881\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcat.2023.133881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种合理模型的Coyote优化复合迭代算法(cocia)。特别是有理模型的分子和分母中的参数使微分方程难以求解。为了解决这一问题,采用COA算法对分母中的参数进行估计。与基于偏差补偿的最小二乘(BCLS)算法和粒子群优化复合迭代算法(PSO-CIA)相比,该方法具有更高的精度和更快的收敛速度。最后,通过仿真算例验证了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The compound iterative algorithm for rational models based on the Coyote optimisation algorithm
This article proposes a Coyote Optimisation Compound Iterative Algorithm (CO-CIA) for rational models. Particularly, the parameters in the numerator and denominator of rational models make the derivative equation hard to solve. To deal with this problem, the Coyote Optimisation Algorithm (COA) is applied to estimate the parameters in the denominator. Compared with the Bias Compensation-based Least Squares (BCLS) algorithm and the Particle Swarm Optimisation Compound Iterative Algorithm (PSO-CIA), the proposed method has higher accuracy and faster convergence rates. Finally, a simulation example is utilised to verify the effectiveness of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY
INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.80
自引率
45.50%
发文量
49
期刊介绍: IJCAT addresses issues of computer applications, information and communication systems, software engineering and management, CAD/CAM/CAE, numerical analysis and simulations, finite element methods and analyses, robotics, computer applications in multimedia and new technologies, computer aided learning and training. Topics covered include: -Computer applications in engineering and technology- Computer control system design- CAD/CAM, CAE, CIM and robotics- Computer applications in knowledge-based and expert systems- Computer applications in information technology and communication- Computer-integrated material processing (CIMP)- Computer-aided learning (CAL)- Computer modelling and simulation- Synthetic approach for engineering- Man-machine interface- Software engineering and management- Management techniques and methods- Human computer interaction- Real-time systems
期刊最新文献
Bio-inspired method for segmenting the optic disc and macula in retinal images Deep learning approach based hybrid fine-tuned Smith algorithm with Adam optimiser for multilingual opinion mining Slat noise control using active piezo-ceramic actuator Providing an open framework to facilitate tax fraud detection To predict the characteristic impedance of the microstrip transmission line using supervised machine learning regression techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1