G. Tolstolutska, M. Tikhonovsky, О. Velikodny, S. Karpov, V. Ruzhytskyi, G. Tolmachova, R. Vasilenko
{"title":"氩离子辐照下轻量化多主元素钛基合金的硬化","authors":"G. Tolstolutska, M. Tikhonovsky, О. Velikodny, S. Karpov, V. Ruzhytskyi, G. Tolmachova, R. Vasilenko","doi":"10.46813/2023-147-003","DOIUrl":null,"url":null,"abstract":"Among new prospective materials multi-principal element alloys (MPEA) have attracted considerable attention in recent years due to their excellent corrosion and irradiation resistance as well as their good mechanical properties over a wide temperature range. The new lightweight multi-principal element titanium-based alloy 61Ti-10Cr-7Al11V-11Nb (at. %) with high ductility at room and elevated temperatures is studied. This single-phase bcc alloy was irradiated with 1.4 MeV Ar ions at room temperature and mid-range doses from 1 to 10 displacements per atom. The effect of irradiation is studied by examining the hardening. A comparison was performed with irradiation-induced hardening behaviour of MPEA, 316 austenitic stainless steel irradiated under an identical condition. It was shown that hardness increases with irradiation dose for all the materials studied, but this increase is lower in multi-principal element alloys both face-centered cubic (FCC) and body-centered cubic (BCC) structures than in stainless conventional steel.","PeriodicalId":54580,"journal":{"name":"Problems of Atomic Science and Technology","volume":"120 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HARDENING OF LIGHTWEIGHT MULTI-PRINCIPAL ELEMENT TITANIUM-BASED ALLOY UNDER AR ION IRRADIATION\",\"authors\":\"G. Tolstolutska, M. Tikhonovsky, О. Velikodny, S. Karpov, V. Ruzhytskyi, G. Tolmachova, R. Vasilenko\",\"doi\":\"10.46813/2023-147-003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Among new prospective materials multi-principal element alloys (MPEA) have attracted considerable attention in recent years due to their excellent corrosion and irradiation resistance as well as their good mechanical properties over a wide temperature range. The new lightweight multi-principal element titanium-based alloy 61Ti-10Cr-7Al11V-11Nb (at. %) with high ductility at room and elevated temperatures is studied. This single-phase bcc alloy was irradiated with 1.4 MeV Ar ions at room temperature and mid-range doses from 1 to 10 displacements per atom. The effect of irradiation is studied by examining the hardening. A comparison was performed with irradiation-induced hardening behaviour of MPEA, 316 austenitic stainless steel irradiated under an identical condition. It was shown that hardness increases with irradiation dose for all the materials studied, but this increase is lower in multi-principal element alloys both face-centered cubic (FCC) and body-centered cubic (BCC) structures than in stainless conventional steel.\",\"PeriodicalId\":54580,\"journal\":{\"name\":\"Problems of Atomic Science and Technology\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Problems of Atomic Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46813/2023-147-003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Problems of Atomic Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46813/2023-147-003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
HARDENING OF LIGHTWEIGHT MULTI-PRINCIPAL ELEMENT TITANIUM-BASED ALLOY UNDER AR ION IRRADIATION
Among new prospective materials multi-principal element alloys (MPEA) have attracted considerable attention in recent years due to their excellent corrosion and irradiation resistance as well as their good mechanical properties over a wide temperature range. The new lightweight multi-principal element titanium-based alloy 61Ti-10Cr-7Al11V-11Nb (at. %) with high ductility at room and elevated temperatures is studied. This single-phase bcc alloy was irradiated with 1.4 MeV Ar ions at room temperature and mid-range doses from 1 to 10 displacements per atom. The effect of irradiation is studied by examining the hardening. A comparison was performed with irradiation-induced hardening behaviour of MPEA, 316 austenitic stainless steel irradiated under an identical condition. It was shown that hardness increases with irradiation dose for all the materials studied, but this increase is lower in multi-principal element alloys both face-centered cubic (FCC) and body-centered cubic (BCC) structures than in stainless conventional steel.
期刊介绍:
The journal covers the following topics:
Physics of Radiation Effects and Radiation Materials Science;
Nuclear Physics Investigations;
Plasma Physics;
Vacuum, Pure Materials and Superconductors;
Plasma Electronics and New Methods of Acceleration.