通过中红外宽带飞秒激光源光谱传感液相和气相碳氢化合物

IF 4.6 Q1 CHEMISTRY, ANALYTICAL ACS Measurement Science Au Pub Date : 2023-10-12 DOI:10.1021/acsmeasuresciau.3c00026
Michael Hlavatsch, Andrea Teuber, Max Eisele and Boris Mizaikoff*, 
{"title":"通过中红外宽带飞秒激光源光谱传感液相和气相碳氢化合物","authors":"Michael Hlavatsch,&nbsp;Andrea Teuber,&nbsp;Max Eisele and Boris Mizaikoff*,&nbsp;","doi":"10.1021/acsmeasuresciau.3c00026","DOIUrl":null,"url":null,"abstract":"<p >In this study, we demonstrate the combination of a tunable broadband mid-infrared (MIR) femtosecond laser source separately coupled to a ZnSe crystal horizontal attenuated total reflection (ATR) sensor cell for liquid phase samples and to a substrate-integrated hollow waveguide (iHWG) for gas phase samples. Utilizing this emerging light source technology as an alternative MIR radiation source for Fourier transform infrared (FTIR) spectroscopy opens interesting opportunities for analytical applications. In a first approach, we demonstrate the quantitative analysis of three individual samples, ethanol (liquid), methane (gas), and 2-methyl-1-propene (gas), with limits of detection of 0.3% (ethanol) and 22 ppm<sub>v</sub> and 74 ppm<sub>v</sub> (methane and isobutylene), respectively, determined at selected emission wavelengths of the MIR laser source (i.e., 890 cm<sup>–1</sup>, 1046 and 1305 cm<sup>–1</sup>). Hence, the applicability of a broadband MIR femtosecond laser source as a bright alternative light source for quantitative analysis via FTIR spectroscopy in various sensing configurations has been demonstrated.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.3c00026","citationCount":"0","resultStr":"{\"title\":\"Sensing Liquid- and Gas-Phase Hydrocarbons via Mid-Infrared Broadband Femtosecond Laser Source Spectroscopy\",\"authors\":\"Michael Hlavatsch,&nbsp;Andrea Teuber,&nbsp;Max Eisele and Boris Mizaikoff*,&nbsp;\",\"doi\":\"10.1021/acsmeasuresciau.3c00026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In this study, we demonstrate the combination of a tunable broadband mid-infrared (MIR) femtosecond laser source separately coupled to a ZnSe crystal horizontal attenuated total reflection (ATR) sensor cell for liquid phase samples and to a substrate-integrated hollow waveguide (iHWG) for gas phase samples. Utilizing this emerging light source technology as an alternative MIR radiation source for Fourier transform infrared (FTIR) spectroscopy opens interesting opportunities for analytical applications. In a first approach, we demonstrate the quantitative analysis of three individual samples, ethanol (liquid), methane (gas), and 2-methyl-1-propene (gas), with limits of detection of 0.3% (ethanol) and 22 ppm<sub>v</sub> and 74 ppm<sub>v</sub> (methane and isobutylene), respectively, determined at selected emission wavelengths of the MIR laser source (i.e., 890 cm<sup>–1</sup>, 1046 and 1305 cm<sup>–1</sup>). Hence, the applicability of a broadband MIR femtosecond laser source as a bright alternative light source for quantitative analysis via FTIR spectroscopy in various sensing configurations has been demonstrated.</p>\",\"PeriodicalId\":29800,\"journal\":{\"name\":\"ACS Measurement Science Au\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.3c00026\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Measurement Science Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsmeasuresciau.3c00026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Measurement Science Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmeasuresciau.3c00026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们展示了将可调谐宽带中红外(MIR)飞秒激光光源分别与用于液相样品的 ZnSe 晶体水平衰减全反射(ATR)传感器单元和用于气相样品的基底集成空心波导(iHWG)相结合的方法。利用这种新兴光源技术作为傅立叶变换红外(FTIR)光谱的替代中红外辐射源,为分析应用带来了有趣的机遇。在第一种方法中,我们展示了对乙醇(液体)、甲烷(气体)和 2-甲基-1-丙烯(气体)这三种样品的定量分析,检测限分别为 0.3%(乙醇)、22 ppmv 和 74 ppmv(甲烷和异丁烯),是在选定的中红外激光源发射波长(即 890 cm-1、1046 和 1305 cm-1)下测定的。因此,宽带近红外飞秒激光源作为一种明亮的替代光源,适用于在各种传感配置中通过傅立叶变换红外光谱进行定量分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sensing Liquid- and Gas-Phase Hydrocarbons via Mid-Infrared Broadband Femtosecond Laser Source Spectroscopy

In this study, we demonstrate the combination of a tunable broadband mid-infrared (MIR) femtosecond laser source separately coupled to a ZnSe crystal horizontal attenuated total reflection (ATR) sensor cell for liquid phase samples and to a substrate-integrated hollow waveguide (iHWG) for gas phase samples. Utilizing this emerging light source technology as an alternative MIR radiation source for Fourier transform infrared (FTIR) spectroscopy opens interesting opportunities for analytical applications. In a first approach, we demonstrate the quantitative analysis of three individual samples, ethanol (liquid), methane (gas), and 2-methyl-1-propene (gas), with limits of detection of 0.3% (ethanol) and 22 ppmv and 74 ppmv (methane and isobutylene), respectively, determined at selected emission wavelengths of the MIR laser source (i.e., 890 cm–1, 1046 and 1305 cm–1). Hence, the applicability of a broadband MIR femtosecond laser source as a bright alternative light source for quantitative analysis via FTIR spectroscopy in various sensing configurations has been demonstrated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Measurement Science Au
ACS Measurement Science Au 化学计量学-
CiteScore
5.20
自引率
0.00%
发文量
0
期刊介绍: ACS Measurement Science Au is an open access journal that publishes experimental computational or theoretical research in all areas of chemical measurement science. Short letters comprehensive articles reviews and perspectives are welcome on topics that report on any phase of analytical operations including sampling measurement and data analysis. This includes:Chemical Reactions and SelectivityChemometrics and Data ProcessingElectrochemistryElemental and Molecular CharacterizationImagingInstrumentationMass SpectrometryMicroscale and Nanoscale systemsOmics (Genomics Proteomics Metabonomics Metabolomics and Bioinformatics)Sensors and Sensing (Biosensors Chemical Sensors Gas Sensors Intracellular Sensors Single-Molecule Sensors Cell Chips Arrays Microfluidic Devices)SeparationsSpectroscopySurface analysisPapers dealing with established methods need to offer a significantly improved original application of the method.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Development of Simple and Rapid Bead-Based Cytometric Immunoassays Using Superparamagnetic Hybrid Core–Shell Microparticles Colorimetric Hybridization Sensor for DNA Mimic of a SARS-CoV-2 RNA Marker: Direct and Inverse Bioanalysis Super-Resolution Microscopic Imaging of Lipid Droplets in Living Cells via Carbonized Polymer Dot-Based Polarity-Responsive Nanoprobe
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1