Michael Hlavatsch, Andrea Teuber, Max Eisele and Boris Mizaikoff*,
{"title":"通过中红外宽带飞秒激光源光谱传感液相和气相碳氢化合物","authors":"Michael Hlavatsch, Andrea Teuber, Max Eisele and Boris Mizaikoff*, ","doi":"10.1021/acsmeasuresciau.3c00026","DOIUrl":null,"url":null,"abstract":"<p >In this study, we demonstrate the combination of a tunable broadband mid-infrared (MIR) femtosecond laser source separately coupled to a ZnSe crystal horizontal attenuated total reflection (ATR) sensor cell for liquid phase samples and to a substrate-integrated hollow waveguide (iHWG) for gas phase samples. Utilizing this emerging light source technology as an alternative MIR radiation source for Fourier transform infrared (FTIR) spectroscopy opens interesting opportunities for analytical applications. In a first approach, we demonstrate the quantitative analysis of three individual samples, ethanol (liquid), methane (gas), and 2-methyl-1-propene (gas), with limits of detection of 0.3% (ethanol) and 22 ppm<sub>v</sub> and 74 ppm<sub>v</sub> (methane and isobutylene), respectively, determined at selected emission wavelengths of the MIR laser source (i.e., 890 cm<sup>–1</sup>, 1046 and 1305 cm<sup>–1</sup>). Hence, the applicability of a broadband MIR femtosecond laser source as a bright alternative light source for quantitative analysis via FTIR spectroscopy in various sensing configurations has been demonstrated.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"3 6","pages":"452–458"},"PeriodicalIF":4.6000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.3c00026","citationCount":"0","resultStr":"{\"title\":\"Sensing Liquid- and Gas-Phase Hydrocarbons via Mid-Infrared Broadband Femtosecond Laser Source Spectroscopy\",\"authors\":\"Michael Hlavatsch, Andrea Teuber, Max Eisele and Boris Mizaikoff*, \",\"doi\":\"10.1021/acsmeasuresciau.3c00026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In this study, we demonstrate the combination of a tunable broadband mid-infrared (MIR) femtosecond laser source separately coupled to a ZnSe crystal horizontal attenuated total reflection (ATR) sensor cell for liquid phase samples and to a substrate-integrated hollow waveguide (iHWG) for gas phase samples. Utilizing this emerging light source technology as an alternative MIR radiation source for Fourier transform infrared (FTIR) spectroscopy opens interesting opportunities for analytical applications. In a first approach, we demonstrate the quantitative analysis of three individual samples, ethanol (liquid), methane (gas), and 2-methyl-1-propene (gas), with limits of detection of 0.3% (ethanol) and 22 ppm<sub>v</sub> and 74 ppm<sub>v</sub> (methane and isobutylene), respectively, determined at selected emission wavelengths of the MIR laser source (i.e., 890 cm<sup>–1</sup>, 1046 and 1305 cm<sup>–1</sup>). Hence, the applicability of a broadband MIR femtosecond laser source as a bright alternative light source for quantitative analysis via FTIR spectroscopy in various sensing configurations has been demonstrated.</p>\",\"PeriodicalId\":29800,\"journal\":{\"name\":\"ACS Measurement Science Au\",\"volume\":\"3 6\",\"pages\":\"452–458\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.3c00026\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Measurement Science Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsmeasuresciau.3c00026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Measurement Science Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmeasuresciau.3c00026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Sensing Liquid- and Gas-Phase Hydrocarbons via Mid-Infrared Broadband Femtosecond Laser Source Spectroscopy
In this study, we demonstrate the combination of a tunable broadband mid-infrared (MIR) femtosecond laser source separately coupled to a ZnSe crystal horizontal attenuated total reflection (ATR) sensor cell for liquid phase samples and to a substrate-integrated hollow waveguide (iHWG) for gas phase samples. Utilizing this emerging light source technology as an alternative MIR radiation source for Fourier transform infrared (FTIR) spectroscopy opens interesting opportunities for analytical applications. In a first approach, we demonstrate the quantitative analysis of three individual samples, ethanol (liquid), methane (gas), and 2-methyl-1-propene (gas), with limits of detection of 0.3% (ethanol) and 22 ppmv and 74 ppmv (methane and isobutylene), respectively, determined at selected emission wavelengths of the MIR laser source (i.e., 890 cm–1, 1046 and 1305 cm–1). Hence, the applicability of a broadband MIR femtosecond laser source as a bright alternative light source for quantitative analysis via FTIR spectroscopy in various sensing configurations has been demonstrated.
期刊介绍:
ACS Measurement Science Au is an open access journal that publishes experimental computational or theoretical research in all areas of chemical measurement science. Short letters comprehensive articles reviews and perspectives are welcome on topics that report on any phase of analytical operations including sampling measurement and data analysis. This includes:Chemical Reactions and SelectivityChemometrics and Data ProcessingElectrochemistryElemental and Molecular CharacterizationImagingInstrumentationMass SpectrometryMicroscale and Nanoscale systemsOmics (Genomics Proteomics Metabonomics Metabolomics and Bioinformatics)Sensors and Sensing (Biosensors Chemical Sensors Gas Sensors Intracellular Sensors Single-Molecule Sensors Cell Chips Arrays Microfluidic Devices)SeparationsSpectroscopySurface analysisPapers dealing with established methods need to offer a significantly improved original application of the method.