Lorenzo Caprini, Hartmut Lowen, Umberto Marini Bettolo Marconi
{"title":"具有点缺陷的活性晶体中的非均匀熵产生","authors":"Lorenzo Caprini, Hartmut Lowen, Umberto Marini Bettolo Marconi","doi":"10.1088/1751-8121/ad02cc","DOIUrl":null,"url":null,"abstract":"Abstract The presence of defects in solids formed by active particles breaks their discrete translational symmetry. As a consequence, many of their properties become space-dependent and different from those characterizing perfectly ordered structures. Motivated by recent numerical investigations concerning the nonuniform distribution of entropy production and its relation to the configurational properties of active systems, we study theoretically and numerically the spatial profile of the entropy production rate when an active solid contains an isotopic mass defect. The theoretical study of such an imperfect active crystal is conducted by employing a perturbative analysis that considers the perfectly ordered harmonic solid as a reference system. The perturbation theory predicts a nonuniform profile of the entropy production extending over large distances from the position of the impurity. The entropy production rate decays exponentially to its bulk value with a typical healing length that coincides with the correlation length of the spatial velocity correlations characterizing
the perfect active solids in the absence of impurities. The theory is validated against numerical simulations of an active Brownian particle crystal in two dimensions with Weeks-Chandler-Andersen repulsive interparticle potential.","PeriodicalId":16785,"journal":{"name":"Journal of Physics A","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhomogeneous entropy production in active crystals with point imperfections\",\"authors\":\"Lorenzo Caprini, Hartmut Lowen, Umberto Marini Bettolo Marconi\",\"doi\":\"10.1088/1751-8121/ad02cc\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The presence of defects in solids formed by active particles breaks their discrete translational symmetry. As a consequence, many of their properties become space-dependent and different from those characterizing perfectly ordered structures. Motivated by recent numerical investigations concerning the nonuniform distribution of entropy production and its relation to the configurational properties of active systems, we study theoretically and numerically the spatial profile of the entropy production rate when an active solid contains an isotopic mass defect. The theoretical study of such an imperfect active crystal is conducted by employing a perturbative analysis that considers the perfectly ordered harmonic solid as a reference system. The perturbation theory predicts a nonuniform profile of the entropy production extending over large distances from the position of the impurity. The entropy production rate decays exponentially to its bulk value with a typical healing length that coincides with the correlation length of the spatial velocity correlations characterizing
the perfect active solids in the absence of impurities. The theory is validated against numerical simulations of an active Brownian particle crystal in two dimensions with Weeks-Chandler-Andersen repulsive interparticle potential.\",\"PeriodicalId\":16785,\"journal\":{\"name\":\"Journal of Physics A\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/ad02cc\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad02cc","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inhomogeneous entropy production in active crystals with point imperfections
Abstract The presence of defects in solids formed by active particles breaks their discrete translational symmetry. As a consequence, many of their properties become space-dependent and different from those characterizing perfectly ordered structures. Motivated by recent numerical investigations concerning the nonuniform distribution of entropy production and its relation to the configurational properties of active systems, we study theoretically and numerically the spatial profile of the entropy production rate when an active solid contains an isotopic mass defect. The theoretical study of such an imperfect active crystal is conducted by employing a perturbative analysis that considers the perfectly ordered harmonic solid as a reference system. The perturbation theory predicts a nonuniform profile of the entropy production extending over large distances from the position of the impurity. The entropy production rate decays exponentially to its bulk value with a typical healing length that coincides with the correlation length of the spatial velocity correlations characterizing
the perfect active solids in the absence of impurities. The theory is validated against numerical simulations of an active Brownian particle crystal in two dimensions with Weeks-Chandler-Andersen repulsive interparticle potential.