扩展最终伪周期函数的网络演算算法工具箱:伪逆和复合

Raffaele Zippo, Paul Nikolaus, Giovanni Stea
{"title":"扩展最终伪周期函数的网络演算算法工具箱:伪逆和复合","authors":"Raffaele Zippo, Paul Nikolaus, Giovanni Stea","doi":"10.1007/s10626-022-00373-5","DOIUrl":null,"url":null,"abstract":"Abstract Network Calculus (NC) is an algebraic theory that represents traffic and service guarantees as curves in a Cartesian plane, in order to compute performance guarantees for flows traversing a network. NC uses transformation operations, e.g., min-plus convolution of two curves, to model how the traffic profile changes with the traversal of network nodes. Such operations, while mathematically well-defined, can quickly become unmanageable to compute using simple pen and paper for any non-trivial case, hence the need for algorithmic descriptions. Previous work identified the class of piecewise affine functions which are ultimately pseudo-periodic (UPP) as being closed under the main NC operations and able to be described finitely. Algorithms that embody NC operations taking as operands UPP curves have been defined and proved correct, thus enabling software implementations of these operations. However, recent advancements in NC make use of operations, namely the lower pseudo-inverse , upper pseudo-inverse , and composition , that are well-defined from an algebraic standpoint, but whose algorithmic aspects have not been addressed yet. In this paper, we introduce algorithms for the above operations when operands are UPP curves, thus extending the available algorithmic toolbox for NC. We discuss the algorithmic properties of these operations, providing formal proofs of correctness.","PeriodicalId":92890,"journal":{"name":"Discrete event dynamic systems","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Extending the network calculus algorithmic toolbox for ultimately pseudo-periodic functions: pseudo-inverse and composition\",\"authors\":\"Raffaele Zippo, Paul Nikolaus, Giovanni Stea\",\"doi\":\"10.1007/s10626-022-00373-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Network Calculus (NC) is an algebraic theory that represents traffic and service guarantees as curves in a Cartesian plane, in order to compute performance guarantees for flows traversing a network. NC uses transformation operations, e.g., min-plus convolution of two curves, to model how the traffic profile changes with the traversal of network nodes. Such operations, while mathematically well-defined, can quickly become unmanageable to compute using simple pen and paper for any non-trivial case, hence the need for algorithmic descriptions. Previous work identified the class of piecewise affine functions which are ultimately pseudo-periodic (UPP) as being closed under the main NC operations and able to be described finitely. Algorithms that embody NC operations taking as operands UPP curves have been defined and proved correct, thus enabling software implementations of these operations. However, recent advancements in NC make use of operations, namely the lower pseudo-inverse , upper pseudo-inverse , and composition , that are well-defined from an algebraic standpoint, but whose algorithmic aspects have not been addressed yet. In this paper, we introduce algorithms for the above operations when operands are UPP curves, thus extending the available algorithmic toolbox for NC. We discuss the algorithmic properties of these operations, providing formal proofs of correctness.\",\"PeriodicalId\":92890,\"journal\":{\"name\":\"Discrete event dynamic systems\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete event dynamic systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10626-022-00373-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete event dynamic systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10626-022-00373-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

网络微积分(Network Calculus, NC)是一种代数理论,它将流量和服务保证表示为笛卡尔平面上的曲线,以计算流经网络的流量的性能保证。NC使用变换操作,例如,两条曲线的最小加卷积,来模拟流量轮廓如何随着网络节点的遍历而变化。这样的操作,虽然在数学上定义良好,但对于任何不平凡的情况,使用简单的笔和纸很快就会变得难以管理,因此需要算法描述。以前的工作确定了一类分段仿射函数,它们最终是伪周期(UPP),在主要NC操作下是封闭的,并且能够被有限地描述。算法体现数控操作作为操作数UPP曲线已被定义和证明是正确的,从而使这些操作的软件实现。然而,NC的最新进展利用了操作,即下伪逆、上伪逆和复合,这些操作从代数的角度来看是定义良好的,但其算法方面尚未得到解决。本文介绍了操作数为UPP曲线时上述操作的算法,从而扩展了NC的可用算法工具箱。我们讨论了这些运算的算法性质,并提供了其正确性的形式化证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Extending the network calculus algorithmic toolbox for ultimately pseudo-periodic functions: pseudo-inverse and composition
Abstract Network Calculus (NC) is an algebraic theory that represents traffic and service guarantees as curves in a Cartesian plane, in order to compute performance guarantees for flows traversing a network. NC uses transformation operations, e.g., min-plus convolution of two curves, to model how the traffic profile changes with the traversal of network nodes. Such operations, while mathematically well-defined, can quickly become unmanageable to compute using simple pen and paper for any non-trivial case, hence the need for algorithmic descriptions. Previous work identified the class of piecewise affine functions which are ultimately pseudo-periodic (UPP) as being closed under the main NC operations and able to be described finitely. Algorithms that embody NC operations taking as operands UPP curves have been defined and proved correct, thus enabling software implementations of these operations. However, recent advancements in NC make use of operations, namely the lower pseudo-inverse , upper pseudo-inverse , and composition , that are well-defined from an algebraic standpoint, but whose algorithmic aspects have not been addressed yet. In this paper, we introduce algorithms for the above operations when operands are UPP curves, thus extending the available algorithmic toolbox for NC. We discuss the algorithmic properties of these operations, providing formal proofs of correctness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reducing the computational effort of symbolic supervisor synthesis An extremum timed extended reachability graph for temporal analysis of time Petri nets Diagnosability and attack detection for discrete event systems under sensor attacks A tropical-algebraic method for the control of timed event graphs with partial synchronization MGF-based SNC for stationary independent Markovian processes with localized application of martingales
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1