Yellu KUMAR, Adnan QAYOUM, Shahid SALEEM, Fasil QAYOUM MIR
{"title":"燃气轮机燃烧室内胆上游斜坡与射流冷却的联合效应","authors":"Yellu KUMAR, Adnan QAYOUM, Shahid SALEEM, Fasil QAYOUM MIR","doi":"10.18186/thermal.1284759","DOIUrl":null,"url":null,"abstract":"Effusion cooling technique is a highly efficient cooling method used to reduce the thermal stresses of combustion chamber liners in a gas turbine engine. The present study focuses on enhancing the adiabatic effectiveness of effusion cooling. The computational investigations are carried out using COMSOL Multiphysics 5.4 with the standard k- ε turbulence model. Detailed computations for 20 rows of effusion holes on the flat plate are examined for blowing ratios 0.25, 0.5, 1.0, 3.2, and 5.0 for each set of injection angles 30o and 60o. To enhance the effusion cooling performance, an upstream ramp (ramp angles 14o, 24o, and 34o) is introduced before the upstream of effusion holes. The results show that the adiabatic effectiveness increases with an increase of blowing ratio and ramp angles. By placing an upstream ramp, the low blowing ratios can greatly increase the adiabatic effectiveness by 29%, 31%, and 35% for ramp angles of 14o, 24o, and 34o, respectively. For high blowing ratios, an increase in the angles of the ramp shows less impact on adiabatic effectiveness throughout the effusion surface. However, adiabatic effectiveness has increased by 26% compared to the baseline model. It is also observed that injection angle of 30o provides more effectiveness than 60o. This study concludes that placing an upstream ramp increases the effusion cooling performance in the combustion chamber liners of a gas turbine engine","PeriodicalId":45841,"journal":{"name":"Journal of Thermal Engineering","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combined effect of upstream ramp and effusion cooling in combustion chamber liners of gas turbin\",\"authors\":\"Yellu KUMAR, Adnan QAYOUM, Shahid SALEEM, Fasil QAYOUM MIR\",\"doi\":\"10.18186/thermal.1284759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effusion cooling technique is a highly efficient cooling method used to reduce the thermal stresses of combustion chamber liners in a gas turbine engine. The present study focuses on enhancing the adiabatic effectiveness of effusion cooling. The computational investigations are carried out using COMSOL Multiphysics 5.4 with the standard k- ε turbulence model. Detailed computations for 20 rows of effusion holes on the flat plate are examined for blowing ratios 0.25, 0.5, 1.0, 3.2, and 5.0 for each set of injection angles 30o and 60o. To enhance the effusion cooling performance, an upstream ramp (ramp angles 14o, 24o, and 34o) is introduced before the upstream of effusion holes. The results show that the adiabatic effectiveness increases with an increase of blowing ratio and ramp angles. By placing an upstream ramp, the low blowing ratios can greatly increase the adiabatic effectiveness by 29%, 31%, and 35% for ramp angles of 14o, 24o, and 34o, respectively. For high blowing ratios, an increase in the angles of the ramp shows less impact on adiabatic effectiveness throughout the effusion surface. However, adiabatic effectiveness has increased by 26% compared to the baseline model. It is also observed that injection angle of 30o provides more effectiveness than 60o. This study concludes that placing an upstream ramp increases the effusion cooling performance in the combustion chamber liners of a gas turbine engine\",\"PeriodicalId\":45841,\"journal\":{\"name\":\"Journal of Thermal Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18186/thermal.1284759\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18186/thermal.1284759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Combined effect of upstream ramp and effusion cooling in combustion chamber liners of gas turbin
Effusion cooling technique is a highly efficient cooling method used to reduce the thermal stresses of combustion chamber liners in a gas turbine engine. The present study focuses on enhancing the adiabatic effectiveness of effusion cooling. The computational investigations are carried out using COMSOL Multiphysics 5.4 with the standard k- ε turbulence model. Detailed computations for 20 rows of effusion holes on the flat plate are examined for blowing ratios 0.25, 0.5, 1.0, 3.2, and 5.0 for each set of injection angles 30o and 60o. To enhance the effusion cooling performance, an upstream ramp (ramp angles 14o, 24o, and 34o) is introduced before the upstream of effusion holes. The results show that the adiabatic effectiveness increases with an increase of blowing ratio and ramp angles. By placing an upstream ramp, the low blowing ratios can greatly increase the adiabatic effectiveness by 29%, 31%, and 35% for ramp angles of 14o, 24o, and 34o, respectively. For high blowing ratios, an increase in the angles of the ramp shows less impact on adiabatic effectiveness throughout the effusion surface. However, adiabatic effectiveness has increased by 26% compared to the baseline model. It is also observed that injection angle of 30o provides more effectiveness than 60o. This study concludes that placing an upstream ramp increases the effusion cooling performance in the combustion chamber liners of a gas turbine engine
期刊介绍:
Journal of Thermal Enginering is aimed at giving a recognized platform to students, researchers, research scholars, teachers, authors and other professionals in the field of research in Thermal Engineering subjects, to publish their original and current research work to a wide, international audience. In order to achieve this goal, we will have applied for SCI-Expanded Index in 2021 after having an Impact Factor in 2020. The aim of the journal, published on behalf of Yildiz Technical University in Istanbul-Turkey, is to not only include actual, original and applied studies prepared on the sciences of heat transfer and thermodynamics, and contribute to the literature of engineering sciences on the national and international areas but also help the development of Mechanical Engineering. Engineers and academicians from disciplines of Power Plant Engineering, Energy Engineering, Building Services Engineering, HVAC Engineering, Solar Engineering, Wind Engineering, Nanoengineering, surface engineering, thin film technologies, and Computer Aided Engineering will be expected to benefit from this journal’s outputs.