{"title":"基于MFCC的深度学习语音数字识别","authors":"Hossam Boulal, Mohamed Hamidi, Mustapha Abarkan, Jamal Barkani","doi":"10.32985/ijeces.14.7.6","DOIUrl":null,"url":null,"abstract":"The field of speech recognition has made human-machine voice interaction more convenient. Recognizing spoken digits is particularly useful for communication that involves numbers, such as providing a registration code, cellphone number, score, or account number. This article discusses our experience with Amazigh's Automatic Speech Recognition (ASR) using a deep learning- based approach. Our method involves using a convolutional neural network (CNN) with Mel-Frequency Cepstral Coefficients (MFCC) to analyze audio samples and generate spectrograms. We gathered a database of numerals from zero to nine spoken by 42 native Amazigh speakers, consisting of men and women between the ages of 20 and 40, to recognize Amazigh numerals. Our experimental results demonstrate that spoken digits in Amazigh can be recognized with an accuracy of 91.75%, 93% precision, and 92% recall. The preliminary outcomes we have achieved show great satisfaction when compared to the size of the training database. This motivates us to further enhance the system's performance in order to attain a higher rate of recognition. Our findings align with those reported in the existing literature.","PeriodicalId":41912,"journal":{"name":"International Journal of Electrical and Computer Engineering Systems","volume":"34 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Amazigh Spoken Digit Recognition using a Deep Learning Approach based on MFCC\",\"authors\":\"Hossam Boulal, Mohamed Hamidi, Mustapha Abarkan, Jamal Barkani\",\"doi\":\"10.32985/ijeces.14.7.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The field of speech recognition has made human-machine voice interaction more convenient. Recognizing spoken digits is particularly useful for communication that involves numbers, such as providing a registration code, cellphone number, score, or account number. This article discusses our experience with Amazigh's Automatic Speech Recognition (ASR) using a deep learning- based approach. Our method involves using a convolutional neural network (CNN) with Mel-Frequency Cepstral Coefficients (MFCC) to analyze audio samples and generate spectrograms. We gathered a database of numerals from zero to nine spoken by 42 native Amazigh speakers, consisting of men and women between the ages of 20 and 40, to recognize Amazigh numerals. Our experimental results demonstrate that spoken digits in Amazigh can be recognized with an accuracy of 91.75%, 93% precision, and 92% recall. The preliminary outcomes we have achieved show great satisfaction when compared to the size of the training database. This motivates us to further enhance the system's performance in order to attain a higher rate of recognition. Our findings align with those reported in the existing literature.\",\"PeriodicalId\":41912,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering Systems\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32985/ijeces.14.7.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32985/ijeces.14.7.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Amazigh Spoken Digit Recognition using a Deep Learning Approach based on MFCC
The field of speech recognition has made human-machine voice interaction more convenient. Recognizing spoken digits is particularly useful for communication that involves numbers, such as providing a registration code, cellphone number, score, or account number. This article discusses our experience with Amazigh's Automatic Speech Recognition (ASR) using a deep learning- based approach. Our method involves using a convolutional neural network (CNN) with Mel-Frequency Cepstral Coefficients (MFCC) to analyze audio samples and generate spectrograms. We gathered a database of numerals from zero to nine spoken by 42 native Amazigh speakers, consisting of men and women between the ages of 20 and 40, to recognize Amazigh numerals. Our experimental results demonstrate that spoken digits in Amazigh can be recognized with an accuracy of 91.75%, 93% precision, and 92% recall. The preliminary outcomes we have achieved show great satisfaction when compared to the size of the training database. This motivates us to further enhance the system's performance in order to attain a higher rate of recognition. Our findings align with those reported in the existing literature.
期刊介绍:
The International Journal of Electrical and Computer Engineering Systems publishes original research in the form of full papers, case studies, reviews and surveys. It covers theory and application of electrical and computer engineering, synergy of computer systems and computational methods with electrical and electronic systems, as well as interdisciplinary research. Power systems Renewable electricity production Power electronics Electrical drives Industrial electronics Communication systems Advanced modulation techniques RFID devices and systems Signal and data processing Image processing Multimedia systems Microelectronics Instrumentation and measurement Control systems Robotics Modeling and simulation Modern computer architectures Computer networks Embedded systems High-performance computing Engineering education Parallel and distributed computer systems Human-computer systems Intelligent systems Multi-agent and holonic systems Real-time systems Software engineering Internet and web applications and systems Applications of computer systems in engineering and related disciplines Mathematical models of engineering systems Engineering management.