基于蚁群算法和博弈论的D2D通信和速率最大化与一致性

IF 0.8 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Electrical and Computer Engineering Systems Pub Date : 2023-09-11 DOI:10.32985/ijeces.14.7.2
Amel Austine, Suji Pramila R
{"title":"基于蚁群算法和博弈论的D2D通信和速率最大化与一致性","authors":"Amel Austine, Suji Pramila R","doi":"10.32985/ijeces.14.7.2","DOIUrl":null,"url":null,"abstract":"Cellular network is the most popular network setup among today’s wireless communication systems. The primary resource in a cellular system is the spectrum for communication, and owing to the rising number of cellular users, the spectrum that is currently accessible from different service providers is depleting quickly. The resource or channel allocation is the most hindering task in cellular networks. Many efforts have been taken by many researchers to allocate the resources properly in order to increase the channel utilization and it is found that one effective method for reusing the channels inside a cell is device to device (D2D) communication. D2D communication was first developed in order to achieve the fundamental goals of fast data rates, widespread coverage with little latency, energy efficiency, and low per-information transmission costs. The dynamic behaviour of this network set-up again increases the risk of different types of interferences, which is another issue faced by the researchers. In this paper an effort is taken to understand and solve various aspects of channel allocation and Cellular networks have incorporated interference management in D2D communication especially. The two major issues of allocation of resource and management of interference in D2D communication is addressed here. This paper considers the meta heuristic algorithm namely Ant Colony Optimization (ACO) for resource allocation issue and interference management. The sum rate maximization is achieved through Game theory along with the concept of resource exchange in turn to increase the consistency of D2D communication setup. The results demonstrate that our algorithm can significantly increase the sum rate of D2D pairs when compared to other algorithms suggested by related works.","PeriodicalId":41912,"journal":{"name":"International Journal of Electrical and Computer Engineering Systems","volume":"35 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sum Rate Maximization and Consistency in D2D Communication Based on ACO and Game Theory\",\"authors\":\"Amel Austine, Suji Pramila R\",\"doi\":\"10.32985/ijeces.14.7.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cellular network is the most popular network setup among today’s wireless communication systems. The primary resource in a cellular system is the spectrum for communication, and owing to the rising number of cellular users, the spectrum that is currently accessible from different service providers is depleting quickly. The resource or channel allocation is the most hindering task in cellular networks. Many efforts have been taken by many researchers to allocate the resources properly in order to increase the channel utilization and it is found that one effective method for reusing the channels inside a cell is device to device (D2D) communication. D2D communication was first developed in order to achieve the fundamental goals of fast data rates, widespread coverage with little latency, energy efficiency, and low per-information transmission costs. The dynamic behaviour of this network set-up again increases the risk of different types of interferences, which is another issue faced by the researchers. In this paper an effort is taken to understand and solve various aspects of channel allocation and Cellular networks have incorporated interference management in D2D communication especially. The two major issues of allocation of resource and management of interference in D2D communication is addressed here. This paper considers the meta heuristic algorithm namely Ant Colony Optimization (ACO) for resource allocation issue and interference management. The sum rate maximization is achieved through Game theory along with the concept of resource exchange in turn to increase the consistency of D2D communication setup. The results demonstrate that our algorithm can significantly increase the sum rate of D2D pairs when compared to other algorithms suggested by related works.\",\"PeriodicalId\":41912,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering Systems\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32985/ijeces.14.7.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32985/ijeces.14.7.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

蜂窝网络是当今无线通信系统中最流行的网络设置。蜂窝系统中的主要资源是用于通信的频谱,由于蜂窝用户数量的增加,目前可从不同服务提供商获得的频谱正在迅速耗尽。在蜂窝网络中,资源或信道的分配是最困难的任务。为了提高信道利用率,许多研究人员进行了许多努力,并发现一种有效的复用单元内信道的方法是设备对设备(D2D)通信。D2D通信最初是为了实现快速数据速率、广泛覆盖、低延迟、能源效率和低每条信息传输成本的基本目标而开发的。这种网络设置的动态行为再次增加了不同类型干扰的风险,这是研究人员面临的另一个问题。本文试图理解和解决信道分配的各个方面,特别是蜂窝网络在D2D通信中引入了干扰管理。本文讨论了D2D通信中资源分配和干扰管理两个主要问题。本文提出了一种元启发式算法——蚁群优化算法来解决资源分配问题和干扰管理问题。通过博弈论和资源交换的概念实现和速率最大化,从而增加D2D通信设置的一致性。结果表明,与其他相关算法相比,我们的算法可以显著提高D2D对的和速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sum Rate Maximization and Consistency in D2D Communication Based on ACO and Game Theory
Cellular network is the most popular network setup among today’s wireless communication systems. The primary resource in a cellular system is the spectrum for communication, and owing to the rising number of cellular users, the spectrum that is currently accessible from different service providers is depleting quickly. The resource or channel allocation is the most hindering task in cellular networks. Many efforts have been taken by many researchers to allocate the resources properly in order to increase the channel utilization and it is found that one effective method for reusing the channels inside a cell is device to device (D2D) communication. D2D communication was first developed in order to achieve the fundamental goals of fast data rates, widespread coverage with little latency, energy efficiency, and low per-information transmission costs. The dynamic behaviour of this network set-up again increases the risk of different types of interferences, which is another issue faced by the researchers. In this paper an effort is taken to understand and solve various aspects of channel allocation and Cellular networks have incorporated interference management in D2D communication especially. The two major issues of allocation of resource and management of interference in D2D communication is addressed here. This paper considers the meta heuristic algorithm namely Ant Colony Optimization (ACO) for resource allocation issue and interference management. The sum rate maximization is achieved through Game theory along with the concept of resource exchange in turn to increase the consistency of D2D communication setup. The results demonstrate that our algorithm can significantly increase the sum rate of D2D pairs when compared to other algorithms suggested by related works.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
11.80%
发文量
69
期刊介绍: The International Journal of Electrical and Computer Engineering Systems publishes original research in the form of full papers, case studies, reviews and surveys. It covers theory and application of electrical and computer engineering, synergy of computer systems and computational methods with electrical and electronic systems, as well as interdisciplinary research. Power systems Renewable electricity production Power electronics Electrical drives Industrial electronics Communication systems Advanced modulation techniques RFID devices and systems Signal and data processing Image processing Multimedia systems Microelectronics Instrumentation and measurement Control systems Robotics Modeling and simulation Modern computer architectures Computer networks Embedded systems High-performance computing Engineering education Parallel and distributed computer systems Human-computer systems Intelligent systems Multi-agent and holonic systems Real-time systems Software engineering Internet and web applications and systems Applications of computer systems in engineering and related disciplines Mathematical models of engineering systems Engineering management.
期刊最新文献
A Four Slot Dual Feed and Dual Band Reconfigurable Antenna for Fixed Satellite Service Applications Improving Scientific Literature Classification: A Parameter-Efficient Transformer-Based Approach The New ADE-TLM Algorithm for Modeling Debye Medium Multi-Head CNN-based Software Development Risk Classification FOE NET: Segmentation of Fetal in Ultrasound Images Using V-NET
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1