{"title":"面向物联网环境的两级机器学习驱动入侵检测模型","authors":"Yuvraj Singh Malhi, Virendra Singh Shekhawat","doi":"10.1504/ijics.2023.132708","DOIUrl":null,"url":null,"abstract":"As a consequence of the growing number of cyberattacks on IoT devices, the need for defences like intrusion detection systems (IDSs) has significantly risen. But current IDS implementations for IoT are complex to design, difficult to incorporate, platform-specific, and limited by IoT device's resource constraints. This paper proposes a deployment-ready network IDS for IoT that overcomes the shortcomings of the existing IDS solutions and can detect 22 types of attacks. The proposed IDS provide the flexibility to work in multiple modes as per IoT device computing power, made possible via development of three machine learning-based IDS modules. The intrusion detection task has been divided at two levels: at edge devices (using two light modules based on neural network and decision tree) and at centralised controller (using a random forest and XGBoost combination). To ensure the best working tandem of developed modules, different IDS deployment strategies are also given.","PeriodicalId":53652,"journal":{"name":"International Journal of Information and Computer Security","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-level machine learning driven intrusion detection model for IoT environments\",\"authors\":\"Yuvraj Singh Malhi, Virendra Singh Shekhawat\",\"doi\":\"10.1504/ijics.2023.132708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a consequence of the growing number of cyberattacks on IoT devices, the need for defences like intrusion detection systems (IDSs) has significantly risen. But current IDS implementations for IoT are complex to design, difficult to incorporate, platform-specific, and limited by IoT device's resource constraints. This paper proposes a deployment-ready network IDS for IoT that overcomes the shortcomings of the existing IDS solutions and can detect 22 types of attacks. The proposed IDS provide the flexibility to work in multiple modes as per IoT device computing power, made possible via development of three machine learning-based IDS modules. The intrusion detection task has been divided at two levels: at edge devices (using two light modules based on neural network and decision tree) and at centralised controller (using a random forest and XGBoost combination). To ensure the best working tandem of developed modules, different IDS deployment strategies are also given.\",\"PeriodicalId\":53652,\"journal\":{\"name\":\"International Journal of Information and Computer Security\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information and Computer Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijics.2023.132708\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information and Computer Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijics.2023.132708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Two-level machine learning driven intrusion detection model for IoT environments
As a consequence of the growing number of cyberattacks on IoT devices, the need for defences like intrusion detection systems (IDSs) has significantly risen. But current IDS implementations for IoT are complex to design, difficult to incorporate, platform-specific, and limited by IoT device's resource constraints. This paper proposes a deployment-ready network IDS for IoT that overcomes the shortcomings of the existing IDS solutions and can detect 22 types of attacks. The proposed IDS provide the flexibility to work in multiple modes as per IoT device computing power, made possible via development of three machine learning-based IDS modules. The intrusion detection task has been divided at two levels: at edge devices (using two light modules based on neural network and decision tree) and at centralised controller (using a random forest and XGBoost combination). To ensure the best working tandem of developed modules, different IDS deployment strategies are also given.