基于金属-有机框架的表面增强拉曼散射衬底用于气体传感

IF 3.7 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL Chemosensors Pub Date : 2023-10-17 DOI:10.3390/chemosensors11100541
Weiqing Xiong, Xiaoyan Wang, Haiquan Liu, Yue Zhang
{"title":"基于金属-有机框架的表面增强拉曼散射衬底用于气体传感","authors":"Weiqing Xiong, Xiaoyan Wang, Haiquan Liu, Yue Zhang","doi":"10.3390/chemosensors11100541","DOIUrl":null,"url":null,"abstract":"Gas sensing holds great significance in environment monitoring, real–time security alerts and clinical diagnosis, which require sensing technology to distinguish various target molecules with extreme sensitivity and selectivity. Surface–enhanced Raman spectroscopy (SERS) has great potential in gas sensing for its single molecule sensitivity and fingerprint specificity. However, different from molecule sensing in solutions, SERS detection of gas often suffers from low sensitivity as gas molecules usually display a low Raman cross–section and poor affinity on traditional noble metal nanoparticle (NMNP)–based substrates. Therefore, much effort has been made to solve these problems. Fortunately, the appearance of metal–organic frameworks (MOFs) has shed new light on this direction. Due to the unique functional characteristics of MOFs, such as controllable pore size/shape, structural diversity and large specific surface area, SERS substrates based on MOFs can achieve high sensitivity, excellent selectivity and good stability. Although several reviews on MOF–based SERS substrates have been reported, few focus on gas sensing, which is a great challenge. Here, we mainly review the latest research progress on SERS substrates based on different MOFs. Sensitive and active SERS substrates can be prepared according to the unique advantages of MOFs with different metal centers. Then, we focus on composite SERS substrates based on different MOFs and NMNPs and summarize the application of composite SERS substrates in gas sensing. Finally, the future difficulties and potential possibilities of SERS substrates based on MOFs and NMNPs for gas sensing are discussed.","PeriodicalId":10057,"journal":{"name":"Chemosensors","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metal–Organic Frameworks–Based Surface–Enhanced Raman Scattering Substrates for Gas Sensing\",\"authors\":\"Weiqing Xiong, Xiaoyan Wang, Haiquan Liu, Yue Zhang\",\"doi\":\"10.3390/chemosensors11100541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gas sensing holds great significance in environment monitoring, real–time security alerts and clinical diagnosis, which require sensing technology to distinguish various target molecules with extreme sensitivity and selectivity. Surface–enhanced Raman spectroscopy (SERS) has great potential in gas sensing for its single molecule sensitivity and fingerprint specificity. However, different from molecule sensing in solutions, SERS detection of gas often suffers from low sensitivity as gas molecules usually display a low Raman cross–section and poor affinity on traditional noble metal nanoparticle (NMNP)–based substrates. Therefore, much effort has been made to solve these problems. Fortunately, the appearance of metal–organic frameworks (MOFs) has shed new light on this direction. Due to the unique functional characteristics of MOFs, such as controllable pore size/shape, structural diversity and large specific surface area, SERS substrates based on MOFs can achieve high sensitivity, excellent selectivity and good stability. Although several reviews on MOF–based SERS substrates have been reported, few focus on gas sensing, which is a great challenge. Here, we mainly review the latest research progress on SERS substrates based on different MOFs. Sensitive and active SERS substrates can be prepared according to the unique advantages of MOFs with different metal centers. Then, we focus on composite SERS substrates based on different MOFs and NMNPs and summarize the application of composite SERS substrates in gas sensing. Finally, the future difficulties and potential possibilities of SERS substrates based on MOFs and NMNPs for gas sensing are discussed.\",\"PeriodicalId\":10057,\"journal\":{\"name\":\"Chemosensors\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemosensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/chemosensors11100541\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/chemosensors11100541","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

气体传感在环境监测、实时安全报警和临床诊断等领域具有重要意义,需要传感技术以极高的灵敏度和选择性区分各种靶分子。表面增强拉曼光谱(SERS)以其单分子灵敏度和指纹特异性在气体传感领域具有很大的应用潜力。然而,与溶液中的分子传感不同,气体的SERS检测往往存在灵敏度低的问题,因为气体分子在传统的贵金属纳米颗粒(NMNP)基基底上通常表现出低拉曼截面和较差的亲和力。因此,为解决这些问题已经做出了很大的努力。幸运的是,金属有机框架(mof)的出现为这一方向带来了新的曙光。由于mof具有孔径/形状可控、结构多样性和比表面积大等独特的功能特性,基于mof的SERS基板可以实现高灵敏度、优异的选择性和良好的稳定性。虽然已经报道了一些关于mof基SERS衬底的综述,但很少有人关注气敏,这是一个巨大的挑战。本文主要综述了基于不同mof的SERS衬底的最新研究进展。根据不同金属中心mof的独特优势,可以制备出敏感和有源的SERS基板。然后,我们重点研究了基于不同mof和NMNPs的复合SERS基板,并总结了复合SERS基板在气敏中的应用。最后,讨论了基于mof和NMNPs的SERS衬底用于气体传感的未来困难和潜在可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Metal–Organic Frameworks–Based Surface–Enhanced Raman Scattering Substrates for Gas Sensing
Gas sensing holds great significance in environment monitoring, real–time security alerts and clinical diagnosis, which require sensing technology to distinguish various target molecules with extreme sensitivity and selectivity. Surface–enhanced Raman spectroscopy (SERS) has great potential in gas sensing for its single molecule sensitivity and fingerprint specificity. However, different from molecule sensing in solutions, SERS detection of gas often suffers from low sensitivity as gas molecules usually display a low Raman cross–section and poor affinity on traditional noble metal nanoparticle (NMNP)–based substrates. Therefore, much effort has been made to solve these problems. Fortunately, the appearance of metal–organic frameworks (MOFs) has shed new light on this direction. Due to the unique functional characteristics of MOFs, such as controllable pore size/shape, structural diversity and large specific surface area, SERS substrates based on MOFs can achieve high sensitivity, excellent selectivity and good stability. Although several reviews on MOF–based SERS substrates have been reported, few focus on gas sensing, which is a great challenge. Here, we mainly review the latest research progress on SERS substrates based on different MOFs. Sensitive and active SERS substrates can be prepared according to the unique advantages of MOFs with different metal centers. Then, we focus on composite SERS substrates based on different MOFs and NMNPs and summarize the application of composite SERS substrates in gas sensing. Finally, the future difficulties and potential possibilities of SERS substrates based on MOFs and NMNPs for gas sensing are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemosensors
Chemosensors Chemistry-Analytical Chemistry
CiteScore
5.00
自引率
9.50%
发文量
450
审稿时长
11 weeks
期刊介绍: Chemosensors (ISSN 2227-9040; CODEN: CHEMO9) is an international, scientific, open access journal on the science and technology of chemical sensors published quarterly online by MDPI.
期刊最新文献
Controlled Insertion of Silver Nanoparticles in LbL Nanostructures: Fine-Tuning the Sensing Units of an Impedimetric E-Tongue The Developments on Lateral Flow Immunochromatographic Assay for Food Safety in Recent 10 Years: A Review All-Solid-State Potentiometric Sensor Based on Graphene Oxide as Ion-to-Electron Transducer for Nitrate Detection in Water Samples Defect Engineering in Transition Metal Dichalcogenide-Based Gas Sensors Hydrothermally Synthesized Cerium Phosphate with Functionalized Carbon Nanofiber Nanocomposite for Enhanced Electrochemical Detection of Hypoxanthine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1