小区域人口比率估算的空间方差平滑面积水平模型

IF 1.7 3区 数学 Q1 STATISTICS & PROBABILITY International Statistical Review Pub Date : 2023-10-17 DOI:10.1111/insr.12556
Peter A. Gao, Jonathan Wakefield
{"title":"小区域人口比率估算的空间方差平滑面积水平模型","authors":"Peter A. Gao, Jonathan Wakefield","doi":"10.1111/insr.12556","DOIUrl":null,"url":null,"abstract":"Summary Accurate estimates of subnational health and demographic indicators are critical for informing policy. Many countries collect relevant data using complex household surveys, but when data are limited, direct weighted estimates of small area proportions may be unreliable. Area level models treating these direct estimates as response data can improve precision but often require known sampling variances of the direct estimators for all areas. In practice, the sampling variances are estimated, so standard approaches do not account for a key source of uncertainty. To account for variability in the estimated sampling variances, we propose a hierarchical Bayesian spatial area level model for small area proportions that smooths both the estimated proportions and sampling variances to produce point and interval estimates of rates of interest. We demonstrate the performance of our approach via simulation and application to vaccination coverage and HIV prevalence data from the Demographic and Health Surveys.","PeriodicalId":14479,"journal":{"name":"International Statistical Review","volume":"15 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Spatial Variance‐Smoothing Area Level Model for Small Area Estimation of Demographic Rates\",\"authors\":\"Peter A. Gao, Jonathan Wakefield\",\"doi\":\"10.1111/insr.12556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary Accurate estimates of subnational health and demographic indicators are critical for informing policy. Many countries collect relevant data using complex household surveys, but when data are limited, direct weighted estimates of small area proportions may be unreliable. Area level models treating these direct estimates as response data can improve precision but often require known sampling variances of the direct estimators for all areas. In practice, the sampling variances are estimated, so standard approaches do not account for a key source of uncertainty. To account for variability in the estimated sampling variances, we propose a hierarchical Bayesian spatial area level model for small area proportions that smooths both the estimated proportions and sampling variances to produce point and interval estimates of rates of interest. We demonstrate the performance of our approach via simulation and application to vaccination coverage and HIV prevalence data from the Demographic and Health Surveys.\",\"PeriodicalId\":14479,\"journal\":{\"name\":\"International Statistical Review\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Statistical Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/insr.12556\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Statistical Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/insr.12556","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

摘要

准确估计国家以下卫生和人口指标对于为政策提供信息至关重要。许多国家使用复杂的家庭调查收集相关数据,但当数据有限时,对小地区比例的直接加权估计可能不可靠。将这些直接估计值作为响应数据的区域级模型可以提高精度,但通常需要所有区域的直接估计值的已知抽样方差。在实践中,抽样方差是估计的,因此标准方法不能解释不确定性的关键来源。为了解释估计的抽样方差的可变性,我们提出了一个小面积比例的分层贝叶斯空间面积水平模型,该模型可以平滑估计的比例和抽样方差,从而产生利率的点和区间估计。我们通过模拟和应用人口与健康调查的疫苗接种覆盖率和艾滋病毒流行率数据来证明我们的方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Spatial Variance‐Smoothing Area Level Model for Small Area Estimation of Demographic Rates
Summary Accurate estimates of subnational health and demographic indicators are critical for informing policy. Many countries collect relevant data using complex household surveys, but when data are limited, direct weighted estimates of small area proportions may be unreliable. Area level models treating these direct estimates as response data can improve precision but often require known sampling variances of the direct estimators for all areas. In practice, the sampling variances are estimated, so standard approaches do not account for a key source of uncertainty. To account for variability in the estimated sampling variances, we propose a hierarchical Bayesian spatial area level model for small area proportions that smooths both the estimated proportions and sampling variances to produce point and interval estimates of rates of interest. We demonstrate the performance of our approach via simulation and application to vaccination coverage and HIV prevalence data from the Demographic and Health Surveys.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Statistical Review
International Statistical Review 数学-统计学与概率论
CiteScore
4.30
自引率
5.00%
发文量
52
审稿时长
>12 weeks
期刊介绍: International Statistical Review is the flagship journal of the International Statistical Institute (ISI) and of its family of Associations. It publishes papers of broad and general interest in statistics and probability. The term Review is to be interpreted broadly. The types of papers that are suitable for publication include (but are not limited to) the following: reviews/surveys of significant developments in theory, methodology, statistical computing and graphics, statistical education, and application areas; tutorials on important topics; expository papers on emerging areas of research or application; papers describing new developments and/or challenges in relevant areas; papers addressing foundational issues; papers on the history of statistics and probability; white papers on topics of importance to the profession or society; and historical assessment of seminal papers in the field and their impact.
期刊最新文献
Issue Information Statistics: Multivariate Data Integration Using R; Methods and Applications With the mixOmics Package Kim-Anh Lê Cao, Zoe Marie WelhamChapman & Hall/CRC, 2021, xxi + 308 pages, £84.99/$115.00, hardcover ISBN: 978-1032128078 eBook ISBN: 9781003026860 Philosophies, Puzzles, and Paradoxes: A Statistician's Search for the Truth Yudi Pawitan and Youngjo LeeChapman & Hall/CRC, 2024, xiv + 351 pages, £18.39/$23.96 paperback, £104/$136 hardback, £17.24/$22.46 eBook ISBN: 9781032377391 paperback; 9781032377407 hardback; 9781003341659 ebook Machine Learning Theory and Applications: Hands-On Use Cases With Python on Classical and Quantum Machines, Xavier Vasques, John Wiley & Sons, 2024, xx + 487 pages, $89.95, hardcover ISBN: 978-1-394-22061-8 Object Oriented Data Analysis J. S. Marron and I. L. DrydenChapman & Hall/CRC, 2022, xii + 424 pages, softcover ISBN: 978-0-8153-9282-8 (hbk) ISBN: 978-1-032-11480-4 (pbk) ISBN: 978-1-351-18967-5 (ebk)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1