电石渣(CCR)与稻壳灰(RHA)混合材料单土柱法加固直径3.2 cm的承载力基础

Dwi Wahyuni
{"title":"电石渣(CCR)与稻壳灰(RHA)混合材料单土柱法加固直径3.2 cm的承载力基础","authors":"Dwi Wahyuni","doi":"10.22135/sje.2023.8.2.104-108","DOIUrl":null,"url":null,"abstract":"Soil reinforcement method is one of the efforts to improve the technical properties of soil, such as soil bearing capacity, compressibility and permeability. The soil column method is one of the alternatives to improve physical properties by stabilization to improve soil bearing capacity. This research aims to increase the bearing capacity of the sole foundation by using the soil column method with a mixture of clay, 3% calcium carbide residue (CCR) and 12% Rice Hush Ash (RHA). This research was conducted experimentally in the laboratory using clay test specimens taken from Padamaran Village, OKI, South Sumatra Province, which were put into a test box with 1 m x 1 m x 1.4 m dimensions. The soil column modelling in this research used the soil column method. The soil column modelling in this study used a single column variation with a diameter of 3.2 cm with lengths of 40 cm, 46 cm, and 53 cm, respectively. The results are the clay foundation plate's ultimate soil bearing capacity (qu) before and after reinforcement with the soil column method. The bearing capacity of the footprint foundation plate on the largest clay soil occurs in the soil column variation with a length of 40 cm and a diameter of 3.2 cm, where the bearing capacity of the clay soil, which was originally 140 kPa increased to 21 kPa. In the experimental results of the loading test, the longer the column, the bearing capacity of the column decreases, which may have something to do with the slenderness factor of the column. The slimmer the column, the smaller the compressive strength of the column so that the tendency of the column to bend/collapse becomes greater. It happens because slender columns not only accept axial forces but also consider the addition of secondary moments due to the slenderness of the column. Then, the column cannot withstand the shear load due to the compacted clay soil around the column.","PeriodicalId":31278,"journal":{"name":"Sriwijaya Journal of Environment","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reinforcement of Bearing Capacity Foundation using Single Soil Column Method Fixed Diameter 3.2 cm with Calcium Carbide Residue (CCR) and Rice Husk Ash (RHA) Mixed Materials\",\"authors\":\"Dwi Wahyuni\",\"doi\":\"10.22135/sje.2023.8.2.104-108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soil reinforcement method is one of the efforts to improve the technical properties of soil, such as soil bearing capacity, compressibility and permeability. The soil column method is one of the alternatives to improve physical properties by stabilization to improve soil bearing capacity. This research aims to increase the bearing capacity of the sole foundation by using the soil column method with a mixture of clay, 3% calcium carbide residue (CCR) and 12% Rice Hush Ash (RHA). This research was conducted experimentally in the laboratory using clay test specimens taken from Padamaran Village, OKI, South Sumatra Province, which were put into a test box with 1 m x 1 m x 1.4 m dimensions. The soil column modelling in this research used the soil column method. The soil column modelling in this study used a single column variation with a diameter of 3.2 cm with lengths of 40 cm, 46 cm, and 53 cm, respectively. The results are the clay foundation plate's ultimate soil bearing capacity (qu) before and after reinforcement with the soil column method. The bearing capacity of the footprint foundation plate on the largest clay soil occurs in the soil column variation with a length of 40 cm and a diameter of 3.2 cm, where the bearing capacity of the clay soil, which was originally 140 kPa increased to 21 kPa. In the experimental results of the loading test, the longer the column, the bearing capacity of the column decreases, which may have something to do with the slenderness factor of the column. The slimmer the column, the smaller the compressive strength of the column so that the tendency of the column to bend/collapse becomes greater. It happens because slender columns not only accept axial forces but also consider the addition of secondary moments due to the slenderness of the column. Then, the column cannot withstand the shear load due to the compacted clay soil around the column.\",\"PeriodicalId\":31278,\"journal\":{\"name\":\"Sriwijaya Journal of Environment\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sriwijaya Journal of Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22135/sje.2023.8.2.104-108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sriwijaya Journal of Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22135/sje.2023.8.2.104-108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

土体加固方法是提高土体承载力、压缩性和渗透性等技术性能的一种努力。土柱法是通过稳定土体来改善土体物理性质,提高土体承载力的替代方法之一。本研究采用粘土、3%电石渣(CCR)和12%稻谷灰(RHA)混合土柱法提高单底基础承载力。本研究在实验室进行实验,使用从南苏门答腊省OKI市Padamaran村采集的粘土试验标本,将其放入尺寸为1米x 1米x 1.4米的试验箱中。本研究的土柱模型采用土柱法。本研究的土柱模型采用直径为3.2 cm、长度分别为40 cm、46 cm和53 cm的单柱变异。计算结果为土柱法加固前后粘土基础板极限承载力(qu)。最大的黏性土足迹基础承载力发生在长度为40 cm、直径为3.2 cm的土柱变化中,黏性土的承载力由原来的140 kPa增加到21 kPa。在加载试验结果中,柱的长度越长,柱的承载能力越低,这可能与柱的长细系数有关。柱越细,柱的抗压强度越小,柱的弯曲/倒塌倾向越大。这是因为细长的柱不仅接受轴向力,而且考虑了由于柱的细细而增加的二次弯矩。然后,由于柱周围的粘土被压实,柱不能承受剪切荷载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reinforcement of Bearing Capacity Foundation using Single Soil Column Method Fixed Diameter 3.2 cm with Calcium Carbide Residue (CCR) and Rice Husk Ash (RHA) Mixed Materials
Soil reinforcement method is one of the efforts to improve the technical properties of soil, such as soil bearing capacity, compressibility and permeability. The soil column method is one of the alternatives to improve physical properties by stabilization to improve soil bearing capacity. This research aims to increase the bearing capacity of the sole foundation by using the soil column method with a mixture of clay, 3% calcium carbide residue (CCR) and 12% Rice Hush Ash (RHA). This research was conducted experimentally in the laboratory using clay test specimens taken from Padamaran Village, OKI, South Sumatra Province, which were put into a test box with 1 m x 1 m x 1.4 m dimensions. The soil column modelling in this research used the soil column method. The soil column modelling in this study used a single column variation with a diameter of 3.2 cm with lengths of 40 cm, 46 cm, and 53 cm, respectively. The results are the clay foundation plate's ultimate soil bearing capacity (qu) before and after reinforcement with the soil column method. The bearing capacity of the footprint foundation plate on the largest clay soil occurs in the soil column variation with a length of 40 cm and a diameter of 3.2 cm, where the bearing capacity of the clay soil, which was originally 140 kPa increased to 21 kPa. In the experimental results of the loading test, the longer the column, the bearing capacity of the column decreases, which may have something to do with the slenderness factor of the column. The slimmer the column, the smaller the compressive strength of the column so that the tendency of the column to bend/collapse becomes greater. It happens because slender columns not only accept axial forces but also consider the addition of secondary moments due to the slenderness of the column. Then, the column cannot withstand the shear load due to the compacted clay soil around the column.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
9
审稿时长
3 weeks
期刊最新文献
Analysis of Soil Characteristics by Layer Based on the Robertson Et Al and Schmertmann Method from CPT (Cone Penetration Test) The Growth of PB 260 Clone of Rubber Plant on Peatland Mapping of Flood-Prone Areas using GIS & AHP Methods in the Lambidaro Sub-Watershed, Palembang City AERMOD Modeling Analysis of CO And NOx Parameters from Diesel Generator Emission Sources in the Coal Mining Industry Optimizing the Utilization of Swamp Lands for Urban Settlements in Kertapati District, Palembang
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1