{"title":"评价葡萄酒发酵过程中的热释放率:一种创新的方法","authors":"Matteo Malavasi, Luca Cattani, Alessandro Benelli, Luca Pagliarini, Fabio Bozzoli","doi":"10.18280/ijht.410402","DOIUrl":null,"url":null,"abstract":"The food industry consumes a substantial amount of energy with a large portion dedicated to product heat treatments. Thus, enhancing the efficiency of thermal operations could significantly decrease energy demand, reduce costs, and mitigate pollution in this sector. This is particularly applicable in vinification, where the grape must's temperature is crucial to the final wine quality. In this process, the energy required for fermentative thermostating constitutes a majority of the total energy expenditure. Furthermore, the thermal management of fermenting grape must is influenced by the heat released during the fermentation process. Therefore, understanding the precise distribution of heat release during fermentation could considerably improve the energy efficiency of this production. This study proposes and validates a methodology to achieve this objective. The approach is based on the inverse problem technique, which utilizes temperature measurements of the fermenting product. The validation of this technique shows promising results, indicating the potential applicability of our proposed method.","PeriodicalId":13995,"journal":{"name":"International Journal of Heat and Technology","volume":"104 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating Heat Release Rate in Oenological Fermentation: An Innovative Methodology\",\"authors\":\"Matteo Malavasi, Luca Cattani, Alessandro Benelli, Luca Pagliarini, Fabio Bozzoli\",\"doi\":\"10.18280/ijht.410402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The food industry consumes a substantial amount of energy with a large portion dedicated to product heat treatments. Thus, enhancing the efficiency of thermal operations could significantly decrease energy demand, reduce costs, and mitigate pollution in this sector. This is particularly applicable in vinification, where the grape must's temperature is crucial to the final wine quality. In this process, the energy required for fermentative thermostating constitutes a majority of the total energy expenditure. Furthermore, the thermal management of fermenting grape must is influenced by the heat released during the fermentation process. Therefore, understanding the precise distribution of heat release during fermentation could considerably improve the energy efficiency of this production. This study proposes and validates a methodology to achieve this objective. The approach is based on the inverse problem technique, which utilizes temperature measurements of the fermenting product. The validation of this technique shows promising results, indicating the potential applicability of our proposed method.\",\"PeriodicalId\":13995,\"journal\":{\"name\":\"International Journal of Heat and Technology\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Heat and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18280/ijht.410402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/ijht.410402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
Evaluating Heat Release Rate in Oenological Fermentation: An Innovative Methodology
The food industry consumes a substantial amount of energy with a large portion dedicated to product heat treatments. Thus, enhancing the efficiency of thermal operations could significantly decrease energy demand, reduce costs, and mitigate pollution in this sector. This is particularly applicable in vinification, where the grape must's temperature is crucial to the final wine quality. In this process, the energy required for fermentative thermostating constitutes a majority of the total energy expenditure. Furthermore, the thermal management of fermenting grape must is influenced by the heat released during the fermentation process. Therefore, understanding the precise distribution of heat release during fermentation could considerably improve the energy efficiency of this production. This study proposes and validates a methodology to achieve this objective. The approach is based on the inverse problem technique, which utilizes temperature measurements of the fermenting product. The validation of this technique shows promising results, indicating the potential applicability of our proposed method.
期刊介绍:
The IJHT covers all kinds of subjects related to heat and technology, including but not limited to turbulence, combustion, cryogenics, porous media, multiphase flow, radiative transfer, heat and mass transfer, micro- and nanoscale systems, and thermophysical property measurement. The editorial board encourages the authors from all countries to submit papers on the relevant issues, especially those aimed at the practitioner as much as the academic. The papers should further our understanding of the said subjects, and make a significant original contribution to knowledge. The IJHT welcomes original research papers, technical notes and review articles on the following disciplines: Heat transfer Fluid dynamics Thermodynamics Turbulence Combustion Cryogenics Porous media Multiphase flow Radiative transfer Heat and mass transfer Micro- and nanoscale systems Thermophysical property measurement.