语境化在线会话网络

Thomas Magelinski, Kathleen M. Carley
{"title":"语境化在线会话网络","authors":"Thomas Magelinski, Kathleen M. Carley","doi":"10.1609/icwsm.v17i1.22171","DOIUrl":null,"url":null,"abstract":"Online social connections occur within a specific conversational context. Prior work in network analysis of social media data attempts to contextualize data through filtering. We propose a method of contextualizing online conversational connections automatically and illustrate this method with Twitter data. Specifically, we detail a graph neural network model capable of representing tweets in a vector space based on their text, hashtags, URLs, and neighboring tweets. Once tweets are represented, clusters of tweets uncover conversational contexts. We apply our method to a dataset with 4.5 million tweets discussing the 2020 US election. We find that even filtered data contains many different conversational contexts, with users engaging in multiple conversations. While users engage in multiple conversations, the overlap between any two pairs of conversations tends to be only 30-40%, giving very different networks for different conversations. Even accounting for this variation, we show that the relative social status of users varies considerably across contexts, with tau=0.472 on average. Our findings imply that standard network analysis on social media data can be unreliable in the face of multiple conversational contexts.","PeriodicalId":338112,"journal":{"name":"Proceedings of the International AAAI Conference on Web and Social Media","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contextualizing Online Conversational Networks\",\"authors\":\"Thomas Magelinski, Kathleen M. Carley\",\"doi\":\"10.1609/icwsm.v17i1.22171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online social connections occur within a specific conversational context. Prior work in network analysis of social media data attempts to contextualize data through filtering. We propose a method of contextualizing online conversational connections automatically and illustrate this method with Twitter data. Specifically, we detail a graph neural network model capable of representing tweets in a vector space based on their text, hashtags, URLs, and neighboring tweets. Once tweets are represented, clusters of tweets uncover conversational contexts. We apply our method to a dataset with 4.5 million tweets discussing the 2020 US election. We find that even filtered data contains many different conversational contexts, with users engaging in multiple conversations. While users engage in multiple conversations, the overlap between any two pairs of conversations tends to be only 30-40%, giving very different networks for different conversations. Even accounting for this variation, we show that the relative social status of users varies considerably across contexts, with tau=0.472 on average. Our findings imply that standard network analysis on social media data can be unreliable in the face of multiple conversational contexts.\",\"PeriodicalId\":338112,\"journal\":{\"name\":\"Proceedings of the International AAAI Conference on Web and Social Media\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International AAAI Conference on Web and Social Media\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/icwsm.v17i1.22171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International AAAI Conference on Web and Social Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icwsm.v17i1.22171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在线社交关系发生在特定的会话环境中。先前在社交媒体数据网络分析方面的工作试图通过过滤将数据语境化。我们提出了一种自动上下文化在线会话连接的方法,并用Twitter数据说明了这种方法。具体来说,我们详细介绍了一个图神经网络模型,该模型能够基于推文的文本、标签、url和相邻推文在向量空间中表示推文。一旦tweet被表示,tweet集群就会揭示会话上下文。我们将我们的方法应用于一个包含450万条讨论2020年美国大选的推文的数据集。我们发现,即使经过过滤的数据也包含许多不同的会话上下文,用户参与多个会话。当用户参与多个对话时,任何两对对话之间的重叠往往只有30-40%,这就给了不同的对话提供了非常不同的网络。即使考虑到这种差异,我们也表明,用户的相对社会地位在不同的背景下差异很大,平均tau=0.472。我们的研究结果表明,面对多种对话环境,对社交媒体数据的标准网络分析可能是不可靠的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Contextualizing Online Conversational Networks
Online social connections occur within a specific conversational context. Prior work in network analysis of social media data attempts to contextualize data through filtering. We propose a method of contextualizing online conversational connections automatically and illustrate this method with Twitter data. Specifically, we detail a graph neural network model capable of representing tweets in a vector space based on their text, hashtags, URLs, and neighboring tweets. Once tweets are represented, clusters of tweets uncover conversational contexts. We apply our method to a dataset with 4.5 million tweets discussing the 2020 US election. We find that even filtered data contains many different conversational contexts, with users engaging in multiple conversations. While users engage in multiple conversations, the overlap between any two pairs of conversations tends to be only 30-40%, giving very different networks for different conversations. Even accounting for this variation, we show that the relative social status of users varies considerably across contexts, with tau=0.472 on average. Our findings imply that standard network analysis on social media data can be unreliable in the face of multiple conversational contexts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statement of Removal AnnoBERT: Effectively Representing Multiple Annotators’ Label Choices to Improve Hate Speech Detection Just Another Day on Twitter: A Complete 24 Hours of Twitter Data #RoeOverturned: Twitter Dataset on the Abortion Rights Controversy SexWEs: Domain-Aware Word Embeddings via Cross-Lingual Semantic Specialisation for Chinese Sexism Detection in Social Media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1