{"title":"考虑能源供应安全文化的水电氢系统耦合优化","authors":"Renlin Guo","doi":"10.1093/ijlct/ctad080","DOIUrl":null,"url":null,"abstract":"Abstract Although China's new energy power generation industry has developed, how to efficiently use clean energy and ensure safe supply needs further research. As a clean, pollution-free and high calorific value energy, hydrogen provides a solution for absorbing renewable energy and ensuring the stable operation of the power system. Based on the public goods attribute of system security and system operation behavior, this paper analyzes how to express the cultural value of energy supply security through economic means, and makes configuration adjustment under different interaction modes with the power grid, so as to achieve the effect of energy supply security. A multi-objective planning and operation optimization model is established, and the resource, social, economic and environmental benefits are analyzed. The model is solved by NSGA-II. The results show that the energy waste rate of hydrogen microgrid system can be reduced by 37.16%. The probability of power failure can be reduced to 0. Typical scenarios in both off-grid mode and grid-connected mode can increase economic income. In addition, up to more than 1000 tons of carbon emissions per day could be reduced under a typical scenario.","PeriodicalId":14118,"journal":{"name":"International Journal of Low-carbon Technologies","volume":"12 1","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coupling optimization of hydropower and hydrogen systems considering energy supply safety culture\",\"authors\":\"Renlin Guo\",\"doi\":\"10.1093/ijlct/ctad080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Although China's new energy power generation industry has developed, how to efficiently use clean energy and ensure safe supply needs further research. As a clean, pollution-free and high calorific value energy, hydrogen provides a solution for absorbing renewable energy and ensuring the stable operation of the power system. Based on the public goods attribute of system security and system operation behavior, this paper analyzes how to express the cultural value of energy supply security through economic means, and makes configuration adjustment under different interaction modes with the power grid, so as to achieve the effect of energy supply security. A multi-objective planning and operation optimization model is established, and the resource, social, economic and environmental benefits are analyzed. The model is solved by NSGA-II. The results show that the energy waste rate of hydrogen microgrid system can be reduced by 37.16%. The probability of power failure can be reduced to 0. Typical scenarios in both off-grid mode and grid-connected mode can increase economic income. In addition, up to more than 1000 tons of carbon emissions per day could be reduced under a typical scenario.\",\"PeriodicalId\":14118,\"journal\":{\"name\":\"International Journal of Low-carbon Technologies\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Low-carbon Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ijlct/ctad080\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Low-carbon Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ijlct/ctad080","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Coupling optimization of hydropower and hydrogen systems considering energy supply safety culture
Abstract Although China's new energy power generation industry has developed, how to efficiently use clean energy and ensure safe supply needs further research. As a clean, pollution-free and high calorific value energy, hydrogen provides a solution for absorbing renewable energy and ensuring the stable operation of the power system. Based on the public goods attribute of system security and system operation behavior, this paper analyzes how to express the cultural value of energy supply security through economic means, and makes configuration adjustment under different interaction modes with the power grid, so as to achieve the effect of energy supply security. A multi-objective planning and operation optimization model is established, and the resource, social, economic and environmental benefits are analyzed. The model is solved by NSGA-II. The results show that the energy waste rate of hydrogen microgrid system can be reduced by 37.16%. The probability of power failure can be reduced to 0. Typical scenarios in both off-grid mode and grid-connected mode can increase economic income. In addition, up to more than 1000 tons of carbon emissions per day could be reduced under a typical scenario.
期刊介绍:
The International Journal of Low-Carbon Technologies is a quarterly publication concerned with the challenge of climate change and its effects on the built environment and sustainability. The Journal publishes original, quality research papers on issues of climate change, sustainable development and the built environment related to architecture, building services engineering, civil engineering, building engineering, urban design and other disciplines. It features in-depth articles, technical notes, review papers, book reviews and special issues devoted to international conferences. The journal encourages submissions related to interdisciplinary research in the built environment. The journal is available in paper and electronic formats. All articles are peer-reviewed by leading experts in the field.