加铁沉积物微生物燃料电池抑制农业排水沉积物中磷的释放

Q3 Environmental Science Journal of Water and Environment Technology Pub Date : 2023-01-01 DOI:10.2965/jwet.23-040
Gamamada Liyanage Erandi Priyangika Perera, Morihiro Maeda, Hiroaki Somura, Chiyu Nakano, Yuta Nishina
{"title":"加铁沉积物微生物燃料电池抑制农业排水沉积物中磷的释放","authors":"Gamamada Liyanage Erandi Priyangika Perera, Morihiro Maeda, Hiroaki Somura, Chiyu Nakano, Yuta Nishina","doi":"10.2965/jwet.23-040","DOIUrl":null,"url":null,"abstract":"Phosphorus (P) release from sediment caused eutrophication in Kojima Lake, Japan. The efficiency of iron-added sediment microbial fuel cells (SMFCs) in regulating P release from agricultural drainage sediment was investigated in this study. Surface sediment collected from an agricultural drainage canal flowing into Kojima Lake was mixed with iron oxide (Fe2O3) or amorphous iron oxyhydroxide (FeOOH) at 50 mmol kg−1. A 14.6-cm high acrylic pipe was filled with 80 mL of deionized water after 130 g of sediment was placed. A 3 × 3 cm graphite felt was used for the anode in a dual chamber SMFC, while a carbon rod was used for the cathode. Three treatments: No Fe, Fe2O3, and FeOOH, were operated for 408 h under open or closed circuit conditions. Results showed that FeOOH addition lowered P release from sediment regardless of SMFC operational conditions, suggesting that higher P adsorption by FeOOH may mask the effect of SMFCs. Fe2O3 did not reduce total P concentration in the overlying water. In addition, electricity generation was not enhanced by Fe-added SMFCs. Although SMFCs increased sedimentary redox potential, P release was not suppressed by the SMFC operation, indicating that organic P would be released by SMFCs from P-rich sediment.","PeriodicalId":17480,"journal":{"name":"Journal of Water and Environment Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iron-Added Sediment Microbial Fuel Cells to Suppress Phosphorus Release from Sediment in an Agricultural Drainage\",\"authors\":\"Gamamada Liyanage Erandi Priyangika Perera, Morihiro Maeda, Hiroaki Somura, Chiyu Nakano, Yuta Nishina\",\"doi\":\"10.2965/jwet.23-040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phosphorus (P) release from sediment caused eutrophication in Kojima Lake, Japan. The efficiency of iron-added sediment microbial fuel cells (SMFCs) in regulating P release from agricultural drainage sediment was investigated in this study. Surface sediment collected from an agricultural drainage canal flowing into Kojima Lake was mixed with iron oxide (Fe2O3) or amorphous iron oxyhydroxide (FeOOH) at 50 mmol kg−1. A 14.6-cm high acrylic pipe was filled with 80 mL of deionized water after 130 g of sediment was placed. A 3 × 3 cm graphite felt was used for the anode in a dual chamber SMFC, while a carbon rod was used for the cathode. Three treatments: No Fe, Fe2O3, and FeOOH, were operated for 408 h under open or closed circuit conditions. Results showed that FeOOH addition lowered P release from sediment regardless of SMFC operational conditions, suggesting that higher P adsorption by FeOOH may mask the effect of SMFCs. Fe2O3 did not reduce total P concentration in the overlying water. In addition, electricity generation was not enhanced by Fe-added SMFCs. Although SMFCs increased sedimentary redox potential, P release was not suppressed by the SMFC operation, indicating that organic P would be released by SMFCs from P-rich sediment.\",\"PeriodicalId\":17480,\"journal\":{\"name\":\"Journal of Water and Environment Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water and Environment Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2965/jwet.23-040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water and Environment Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2965/jwet.23-040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

沉积物中磷释放引起小岛湖富营养化。研究了加铁沉积物微生物燃料电池(smfc)调节农业排水沉积物中磷释放的效率。从流入小岛湖的农业排水渠中收集的地表沉积物与氧化铁(Fe2O3)或无定形氢氧化铁(FeOOH)混合,浓度为50 mmol kg−1。放置130 g沉积物后,在14.6 cm高的丙烯酸管中填充80 mL去离子水。在双腔SMFC中,阳极采用3 × 3 cm石墨毡,阴极采用碳棒。三种处理:No Fe, Fe2O3和FeOOH,在开路或闭路条件下运行408 h。结果表明,无论SMFC操作条件如何,FeOOH的加入都降低了沉积物中P的释放,表明FeOOH对P的高吸附可能掩盖了SMFC的作用。Fe2O3对上覆水体总磷浓度没有降低作用。此外,添加铁的smfc并没有增强发电能力。虽然SMFC增加了沉积的氧化还原电位,但SMFC的操作并没有抑制P的释放,这表明SMFC会从富磷沉积物中释放有机P。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Iron-Added Sediment Microbial Fuel Cells to Suppress Phosphorus Release from Sediment in an Agricultural Drainage
Phosphorus (P) release from sediment caused eutrophication in Kojima Lake, Japan. The efficiency of iron-added sediment microbial fuel cells (SMFCs) in regulating P release from agricultural drainage sediment was investigated in this study. Surface sediment collected from an agricultural drainage canal flowing into Kojima Lake was mixed with iron oxide (Fe2O3) or amorphous iron oxyhydroxide (FeOOH) at 50 mmol kg−1. A 14.6-cm high acrylic pipe was filled with 80 mL of deionized water after 130 g of sediment was placed. A 3 × 3 cm graphite felt was used for the anode in a dual chamber SMFC, while a carbon rod was used for the cathode. Three treatments: No Fe, Fe2O3, and FeOOH, were operated for 408 h under open or closed circuit conditions. Results showed that FeOOH addition lowered P release from sediment regardless of SMFC operational conditions, suggesting that higher P adsorption by FeOOH may mask the effect of SMFCs. Fe2O3 did not reduce total P concentration in the overlying water. In addition, electricity generation was not enhanced by Fe-added SMFCs. Although SMFCs increased sedimentary redox potential, P release was not suppressed by the SMFC operation, indicating that organic P would be released by SMFCs from P-rich sediment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Water and Environment Technology
Journal of Water and Environment Technology Environmental Science-Water Science and Technology
CiteScore
1.80
自引率
0.00%
发文量
8
审稿时长
43 weeks
期刊介绍: The Journal of Water and Environment Technology is an Open Access, fully peer-reviewed international journal for all aspects of the science, technology and management of water and the environment. The journal’s articles are clearly placed in a broader context to be relevant and interesting to our global audience of researchers, engineers, water technologists, and policy makers. JWET is the official journal of the Japan Society on Water Environment (JSWE) published in English, and welcomes submissions that take basic, applied or modeling approaches to the interesting issues facing the field. Topics can include, but are not limited to: water environment, soil and groundwater, drinking water, biological treatment, physicochemical treatment, sludge and solid waste, toxicity, public health and risk assessment, test and analytical methods, environmental education and other issues. JWET also welcomes seminal studies that help lay the foundations for future research in the field. JWET is committed to an ethical, fair and rapid peer-review process. It is published six times per year. It has two article types: Original Articles and Review Articles.
期刊最新文献
Control of Microcystis Buoyancy by Reducing Cellular Carbohydrate Content at High Temperature Estimating Green and Blue Water Footprint of Major Cereal and Vegetable Crops in Salale Zone, Oromia, Ethiopia Spontaneous Cell Lysis by Pelomonas saccharophila MRB3 Provides Plant-Available Macronutrients in Hydroponic Growth Media and Accelerates Biomass Production of Duckweed Brilliant Green Biosorption from Aqueous Solutions on Okara: Equilibrium, Kinetic and Thermodynamic Studies Synthesis and Optimization of Visible-light-driven G-C3N4/CoMoO4 for the Removal of Tetracycline
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1