基于拓扑和二维材料的自旋电子器件

None Longxing Jiang, None Qingchao Li, None Xu Zhang, None Jingfeng Li, None Jing Zhang, None Zuxin Chen, None Min Zeng, None Hao Wu
{"title":"基于拓扑和二维材料的自旋电子器件","authors":"None Longxing Jiang, None Qingchao Li, None Xu Zhang, None Jingfeng Li, None Jing Zhang, None Zuxin Chen, None Min Zeng, None Hao Wu","doi":"10.7498/aps.73.20231166","DOIUrl":null,"url":null,"abstract":"Novel quantum materials such as topological materials, two-dimensional materials, create new opportunities for the spintronic devices. These materials can improve the charge-spin conversion efficiency, provide high-quality interface, and enhance the energy efficiently for spintronic devices. In addition,they have rich interactions and coupling effects, which provides a perfect platform to find new physics and novel methods to control the spintronic properties. Many inspiring results have been reported regarding the research on topological materials and two-dimensional materials, especially the layered topological and two-dimensional magnetic materials, and their heterostructures. This review will discuss recent achievements with these novel quantum materials on spintronic applications, firstly introduce the breakthroughs that topological materials have been made in spin-orbit torque devices, then present two-dimensional magnetic materials and their performance in spintronic devices, finally discuss the research progress in topological materials/two-dimensional magnetic materials heterostructures. This review can help to get a comprehensive understanding of the development of these novel quantum materials in the field of spintronics and inspire new research ideas with these novel materials.","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spintronic devices based on topological and two-dimensional materials\",\"authors\":\"None Longxing Jiang, None Qingchao Li, None Xu Zhang, None Jingfeng Li, None Jing Zhang, None Zuxin Chen, None Min Zeng, None Hao Wu\",\"doi\":\"10.7498/aps.73.20231166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Novel quantum materials such as topological materials, two-dimensional materials, create new opportunities for the spintronic devices. These materials can improve the charge-spin conversion efficiency, provide high-quality interface, and enhance the energy efficiently for spintronic devices. In addition,they have rich interactions and coupling effects, which provides a perfect platform to find new physics and novel methods to control the spintronic properties. Many inspiring results have been reported regarding the research on topological materials and two-dimensional materials, especially the layered topological and two-dimensional magnetic materials, and their heterostructures. This review will discuss recent achievements with these novel quantum materials on spintronic applications, firstly introduce the breakthroughs that topological materials have been made in spin-orbit torque devices, then present two-dimensional magnetic materials and their performance in spintronic devices, finally discuss the research progress in topological materials/two-dimensional magnetic materials heterostructures. This review can help to get a comprehensive understanding of the development of these novel quantum materials in the field of spintronics and inspire new research ideas with these novel materials.\",\"PeriodicalId\":10252,\"journal\":{\"name\":\"Chinese Physics\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7498/aps.73.20231166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7498/aps.73.20231166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

拓扑材料、二维材料等新型量子材料为自旋电子器件的发展创造了新的机遇。这些材料可以提高电荷-自旋转换效率,提供高质量的界面,并有效地增强自旋电子器件的能量。此外,它们具有丰富的相互作用和耦合效应,这为寻找新的物理和新方法来控制自旋电子性质提供了一个完美的平台。在拓扑材料和二维材料,特别是层状拓扑和二维磁性材料及其异质结构的研究方面,已经报道了许多鼓舞人心的成果。本文将讨论这些新型量子材料在自旋电子应用方面的最新进展,首先介绍拓扑材料在自旋轨道转矩器件方面取得的突破,然后介绍二维磁性材料及其在自旋电子器件中的性能,最后讨论拓扑材料/二维磁性材料异质结构方面的研究进展。本文综述有助于对这些新型量子材料在自旋电子学领域的发展有一个全面的认识,并为这些新型材料的研究提供新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spintronic devices based on topological and two-dimensional materials
Novel quantum materials such as topological materials, two-dimensional materials, create new opportunities for the spintronic devices. These materials can improve the charge-spin conversion efficiency, provide high-quality interface, and enhance the energy efficiently for spintronic devices. In addition,they have rich interactions and coupling effects, which provides a perfect platform to find new physics and novel methods to control the spintronic properties. Many inspiring results have been reported regarding the research on topological materials and two-dimensional materials, especially the layered topological and two-dimensional magnetic materials, and their heterostructures. This review will discuss recent achievements with these novel quantum materials on spintronic applications, firstly introduce the breakthroughs that topological materials have been made in spin-orbit torque devices, then present two-dimensional magnetic materials and their performance in spintronic devices, finally discuss the research progress in topological materials/two-dimensional magnetic materials heterostructures. This review can help to get a comprehensive understanding of the development of these novel quantum materials in the field of spintronics and inspire new research ideas with these novel materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
General Theory of quantum holography based on two-photon Interference Back contact optimization for Sb<sub>2</sub>Se<sub>3</sub> solar cells Algorithms for calculating polarization direction based on spatial modulation of vector optical field Enhanced microwave absorption properties of large-sized monolayer two-dimensional Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> loaded with Fe<sub>3</sub>O<sub>4</sub> nanoparticles Effect of energy level configuration on storage of optical solitons in InAs/GaAs quantum dot electromagnetically induced transparency medium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1