无序点原子云上连续度量的多项式时间算法

IF 2.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Match-Communications in Mathematical and in Computer Chemistry Pub Date : 2023-10-01 DOI:10.46793/match.91-1.079k
Vitaliy Kurlin
{"title":"无序点原子云上连续度量的多项式时间算法","authors":"Vitaliy Kurlin","doi":"10.46793/match.91-1.079k","DOIUrl":null,"url":null,"abstract":"The most fundamental model of a molecule is a cloud of unordered atoms, even without chemical bonds that can depend on thresholds for distances and angles. The strongest equivalence between clouds of atoms is rigid motion, which is a composition of translations and rotations. The existing datasets of experimental and simulated molecules require a continuous quantification of similarity in terms of a distance metric. While clouds of m ordered points were continuously classified by Lagrange’s quadratic forms (distance matrices or Gram matrices), their extensions to m unordered points are impractical due to the exponential number of m! permutations. We propose new metrics that are continuous in general position and are computable in a polynomial time in the number m of unordered points in any Euclidean space of a fixed dimension n.","PeriodicalId":51115,"journal":{"name":"Match-Communications in Mathematical and in Computer Chemistry","volume":"30 1","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Polynomial-Time Algorithms for Continuous Metrics on Atomic Clouds of Unordered Points\",\"authors\":\"Vitaliy Kurlin\",\"doi\":\"10.46793/match.91-1.079k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The most fundamental model of a molecule is a cloud of unordered atoms, even without chemical bonds that can depend on thresholds for distances and angles. The strongest equivalence between clouds of atoms is rigid motion, which is a composition of translations and rotations. The existing datasets of experimental and simulated molecules require a continuous quantification of similarity in terms of a distance metric. While clouds of m ordered points were continuously classified by Lagrange’s quadratic forms (distance matrices or Gram matrices), their extensions to m unordered points are impractical due to the exponential number of m! permutations. We propose new metrics that are continuous in general position and are computable in a polynomial time in the number m of unordered points in any Euclidean space of a fixed dimension n.\",\"PeriodicalId\":51115,\"journal\":{\"name\":\"Match-Communications in Mathematical and in Computer Chemistry\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Match-Communications in Mathematical and in Computer Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46793/match.91-1.079k\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Match-Communications in Mathematical and in Computer Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46793/match.91-1.079k","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

分子最基本的模型是由无序原子组成的云,即使没有化学键,也可以依赖于距离和角度的阈值。原子云之间最强的等效是刚性运动,它是平移和旋转的组合。现有的实验和模拟分子数据集需要根据距离度量连续量化相似性。虽然由m个有序点组成的云由拉格朗日的二次型(距离矩阵或格拉姆矩阵)连续分类,但由于m的指数数,它们扩展到m个无序点是不切实际的!排列。我们提出了在一般位置连续的新度量,并且在固定维数n的任何欧几里德空间中,在m个数的无序点上可以在多项式时间内计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Polynomial-Time Algorithms for Continuous Metrics on Atomic Clouds of Unordered Points
The most fundamental model of a molecule is a cloud of unordered atoms, even without chemical bonds that can depend on thresholds for distances and angles. The strongest equivalence between clouds of atoms is rigid motion, which is a composition of translations and rotations. The existing datasets of experimental and simulated molecules require a continuous quantification of similarity in terms of a distance metric. While clouds of m ordered points were continuously classified by Lagrange’s quadratic forms (distance matrices or Gram matrices), their extensions to m unordered points are impractical due to the exponential number of m! permutations. We propose new metrics that are continuous in general position and are computable in a polynomial time in the number m of unordered points in any Euclidean space of a fixed dimension n.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
26.90%
发文量
71
审稿时长
2 months
期刊介绍: MATCH Communications in Mathematical and in Computer Chemistry publishes papers of original research as well as reviews on chemically important mathematical results and non-routine applications of mathematical techniques to chemical problems. A paper acceptable for publication must contain non-trivial mathematics or communicate non-routine computer-based procedures AND have a clear connection to chemistry. Papers are published without any processing or publication charge.
期刊最新文献
ChemCNet: An Explainable Integrated Model for Intelligent Analyzing Chemistry Synthesis Reactions Asymptotic Distribution of Degree-Based Topological Indices Note on the Minimum Bond Incident Degree Indices of k-Cyclic Graphs Sombor Index of Hypergraphs The ABC Index Conundrum's Complete Solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1