Murray E. Maitland, Sheri I. Imsdahl, Donald J. Fogelberg, Katheryn J. Allyn, Kevin C. Cain, Andrew T. Humbert, Alexander Albury, Evandro M. Ficanha, James M. Colvin, Matthew M. Wernke
{"title":"一种前平面适应性假肢足的运动分析","authors":"Murray E. Maitland, Sheri I. Imsdahl, Donald J. Fogelberg, Katheryn J. Allyn, Kevin C. Cain, Andrew T. Humbert, Alexander Albury, Evandro M. Ficanha, James M. Colvin, Matthew M. Wernke","doi":"10.1097/jpo.0000000000000490","DOIUrl":null,"url":null,"abstract":"ABSTRACT Introduction An objective of designing a prosthetic foot is to achieve the natural adaptability of the foot and ankle on various surfaces and different forms of gait. Frontal plane position of the foot relative to the shank changes with many functional aspects of gait, such as turning, stairs, and walking on uneven ground. Prosthetic foot designs have variable frontal plane adaptability. An investigation foot with a linkage with ±10° of frontal plane motion was developed to improve frontal plane response under various conditions. The purpose of this study was to compare the kinematics of locked and unlocked conditions of a frontal plane adaptable prosthetic foot and the person’s usual foot while walking forward on a level surface, on an unstable rock surface, and sidestep, using a crossover design. These different conditions result in changes in frontal plane motion in the anatomical foot and ankle, and the current study evaluates whether there are similar trends in prosthetic feet. Materials and Methods People were included if they had a unilateral below-knee amputation, intact residual limb skin, were over 16 years old, and were able to walk more than 400 m on level ground without using a walking aid and without an increase in pain. The control group was people without amputations who completed the procedures once. Participants with amputations completed forward walking on level ground, on an unstable rock surface, and sidestep with their usual foot. Then after 2 weeks of accommodation, participants repeated these tests with the investigational foot unlocked and locked. Motion analysis data were collected with a 12-camera optically based system. Primary outcomes were sagittal and frontal plane motions of the foot relative to the shank. In addition, step length, step width, and stride velocity were obtained from the kinematic measures. Paired t -tests were used for statistical inference for individual participant comparisons. Unpaired t -tests were used for comparisons between the controls and people with amputations. Results Twenty-one people with amputations and 10 controls completed the tests. Participants with amputation had 16 different usual feet. There was a wide variation in usual foot motion during forward walking, whereas investigational foot conditions showed less variability. During level walking, control subjects had more frontal plane motion than any of the foot conditions, and the unlocked had more frontal plane motion than the usual foot and locked condition. Walking across an unstable rock surface showed similar trends, with control participants having more sagittal and frontal plane ankle motion compared with any prosthetic foot condition. Also, the unlocked had statistically greater frontal plane motion than the usual foot or locked condition. Sidestep results were also consistent with other gait tests. The control participants’ sagittal plane ankle range of motion was significantly more than the prosthetic sagittal plane motion for all foot conditions, whether the prosthetic side was leading or trailing. There was significantly more frontal plane motion with the unlocked than the usual foot and locked condition when the prosthetic foot was trailing or leading. Discussion and Conclusions Wide variation in usual foot range of motions in the frontal and sagittal planes confirmed the need for additional controls when considering the effect of the linkage alone. The unlocked had increased frontal plane ranges of motion compared with the locked and the majority of usual foot for all gait conditions, including level walking. This finding demonstrated that people with amputations were functionally using the additional range of motion provided by the linkage. However, control subjects used more range of motion in both the sagittal and frontal planes for the unstable rock surface and sidestepping. Increased frontal plane range of motion did not translate into improved stride length and velocity, step width, or center of mass deviations. Clinical Relevance The person-specific functional activities should be considered when choosing a prosthetic foot. A prosthesis with frontal plane motion may be applicable for a person who moves in a sidestep pattern or on uneven ground.","PeriodicalId":53702,"journal":{"name":"Journal of Prosthetics and Orthotics","volume":"240 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Motion Analysis of a Frontal Plane Adaptable Prosthetic Foot\",\"authors\":\"Murray E. Maitland, Sheri I. Imsdahl, Donald J. Fogelberg, Katheryn J. Allyn, Kevin C. Cain, Andrew T. Humbert, Alexander Albury, Evandro M. Ficanha, James M. Colvin, Matthew M. Wernke\",\"doi\":\"10.1097/jpo.0000000000000490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Introduction An objective of designing a prosthetic foot is to achieve the natural adaptability of the foot and ankle on various surfaces and different forms of gait. Frontal plane position of the foot relative to the shank changes with many functional aspects of gait, such as turning, stairs, and walking on uneven ground. Prosthetic foot designs have variable frontal plane adaptability. An investigation foot with a linkage with ±10° of frontal plane motion was developed to improve frontal plane response under various conditions. The purpose of this study was to compare the kinematics of locked and unlocked conditions of a frontal plane adaptable prosthetic foot and the person’s usual foot while walking forward on a level surface, on an unstable rock surface, and sidestep, using a crossover design. These different conditions result in changes in frontal plane motion in the anatomical foot and ankle, and the current study evaluates whether there are similar trends in prosthetic feet. Materials and Methods People were included if they had a unilateral below-knee amputation, intact residual limb skin, were over 16 years old, and were able to walk more than 400 m on level ground without using a walking aid and without an increase in pain. The control group was people without amputations who completed the procedures once. Participants with amputations completed forward walking on level ground, on an unstable rock surface, and sidestep with their usual foot. Then after 2 weeks of accommodation, participants repeated these tests with the investigational foot unlocked and locked. Motion analysis data were collected with a 12-camera optically based system. Primary outcomes were sagittal and frontal plane motions of the foot relative to the shank. In addition, step length, step width, and stride velocity were obtained from the kinematic measures. Paired t -tests were used for statistical inference for individual participant comparisons. Unpaired t -tests were used for comparisons between the controls and people with amputations. Results Twenty-one people with amputations and 10 controls completed the tests. Participants with amputation had 16 different usual feet. There was a wide variation in usual foot motion during forward walking, whereas investigational foot conditions showed less variability. During level walking, control subjects had more frontal plane motion than any of the foot conditions, and the unlocked had more frontal plane motion than the usual foot and locked condition. Walking across an unstable rock surface showed similar trends, with control participants having more sagittal and frontal plane ankle motion compared with any prosthetic foot condition. Also, the unlocked had statistically greater frontal plane motion than the usual foot or locked condition. Sidestep results were also consistent with other gait tests. The control participants’ sagittal plane ankle range of motion was significantly more than the prosthetic sagittal plane motion for all foot conditions, whether the prosthetic side was leading or trailing. There was significantly more frontal plane motion with the unlocked than the usual foot and locked condition when the prosthetic foot was trailing or leading. Discussion and Conclusions Wide variation in usual foot range of motions in the frontal and sagittal planes confirmed the need for additional controls when considering the effect of the linkage alone. The unlocked had increased frontal plane ranges of motion compared with the locked and the majority of usual foot for all gait conditions, including level walking. This finding demonstrated that people with amputations were functionally using the additional range of motion provided by the linkage. However, control subjects used more range of motion in both the sagittal and frontal planes for the unstable rock surface and sidestepping. Increased frontal plane range of motion did not translate into improved stride length and velocity, step width, or center of mass deviations. Clinical Relevance The person-specific functional activities should be considered when choosing a prosthetic foot. A prosthesis with frontal plane motion may be applicable for a person who moves in a sidestep pattern or on uneven ground.\",\"PeriodicalId\":53702,\"journal\":{\"name\":\"Journal of Prosthetics and Orthotics\",\"volume\":\"240 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Prosthetics and Orthotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1097/jpo.0000000000000490\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ORTHOPEDICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Prosthetics and Orthotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1097/jpo.0000000000000490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
Motion Analysis of a Frontal Plane Adaptable Prosthetic Foot
ABSTRACT Introduction An objective of designing a prosthetic foot is to achieve the natural adaptability of the foot and ankle on various surfaces and different forms of gait. Frontal plane position of the foot relative to the shank changes with many functional aspects of gait, such as turning, stairs, and walking on uneven ground. Prosthetic foot designs have variable frontal plane adaptability. An investigation foot with a linkage with ±10° of frontal plane motion was developed to improve frontal plane response under various conditions. The purpose of this study was to compare the kinematics of locked and unlocked conditions of a frontal plane adaptable prosthetic foot and the person’s usual foot while walking forward on a level surface, on an unstable rock surface, and sidestep, using a crossover design. These different conditions result in changes in frontal plane motion in the anatomical foot and ankle, and the current study evaluates whether there are similar trends in prosthetic feet. Materials and Methods People were included if they had a unilateral below-knee amputation, intact residual limb skin, were over 16 years old, and were able to walk more than 400 m on level ground without using a walking aid and without an increase in pain. The control group was people without amputations who completed the procedures once. Participants with amputations completed forward walking on level ground, on an unstable rock surface, and sidestep with their usual foot. Then after 2 weeks of accommodation, participants repeated these tests with the investigational foot unlocked and locked. Motion analysis data were collected with a 12-camera optically based system. Primary outcomes were sagittal and frontal plane motions of the foot relative to the shank. In addition, step length, step width, and stride velocity were obtained from the kinematic measures. Paired t -tests were used for statistical inference for individual participant comparisons. Unpaired t -tests were used for comparisons between the controls and people with amputations. Results Twenty-one people with amputations and 10 controls completed the tests. Participants with amputation had 16 different usual feet. There was a wide variation in usual foot motion during forward walking, whereas investigational foot conditions showed less variability. During level walking, control subjects had more frontal plane motion than any of the foot conditions, and the unlocked had more frontal plane motion than the usual foot and locked condition. Walking across an unstable rock surface showed similar trends, with control participants having more sagittal and frontal plane ankle motion compared with any prosthetic foot condition. Also, the unlocked had statistically greater frontal plane motion than the usual foot or locked condition. Sidestep results were also consistent with other gait tests. The control participants’ sagittal plane ankle range of motion was significantly more than the prosthetic sagittal plane motion for all foot conditions, whether the prosthetic side was leading or trailing. There was significantly more frontal plane motion with the unlocked than the usual foot and locked condition when the prosthetic foot was trailing or leading. Discussion and Conclusions Wide variation in usual foot range of motions in the frontal and sagittal planes confirmed the need for additional controls when considering the effect of the linkage alone. The unlocked had increased frontal plane ranges of motion compared with the locked and the majority of usual foot for all gait conditions, including level walking. This finding demonstrated that people with amputations were functionally using the additional range of motion provided by the linkage. However, control subjects used more range of motion in both the sagittal and frontal planes for the unstable rock surface and sidestepping. Increased frontal plane range of motion did not translate into improved stride length and velocity, step width, or center of mass deviations. Clinical Relevance The person-specific functional activities should be considered when choosing a prosthetic foot. A prosthesis with frontal plane motion may be applicable for a person who moves in a sidestep pattern or on uneven ground.
期刊介绍:
Published quarterly by the AAOP, JPO: Journal of Prosthetics and Orthotics provides information on new devices, fitting and fabrication techniques, and patient management experiences. The focus is on prosthetics and orthotics, with timely reports from related fields such as orthopaedic research, occupational therapy, physical therapy, orthopaedic surgery, amputation surgery, physical medicine, biomedical engineering, psychology, ethics, and gait analysis. Each issue contains research-based articles reviewed and approved by a highly qualified editorial board and an Academy self-study quiz offering two PCE''s.