Sergej Grednev, Henrik S. Steude, Stefan Bronder, Oliver Niggemann, Anne Jung
{"title":"人工智能辅助的辅助结构研究","authors":"Sergej Grednev, Henrik S. Steude, Stefan Bronder, Oliver Niggemann, Anne Jung","doi":"10.14311/app.2023.42.0032","DOIUrl":null,"url":null,"abstract":"In this study, the viability of using machine learning models to predict stress-strain curves of auxetic structures based on geometry-describing parameters is explored. Given the computational cost and time associated with generating these curves through numerical simulations, a machine learning-based approach promises a more efficient alternative. A range of machine learning models, including Artificial Neural Networks, k-Nearest Neighbors Regression, Support Vector Regression, and XGBoost, is implemented and compared regarding the aptitude to predict stress-strain curves under quasi-static compressive loading. Training data is generated using validated finite element simulations. The performance of these models is rigorously tested on data not seen during training. The Feed-Forward Artificial Neural Network emerged as the most proficient model, achieving a Mean Absolute Percentage Error of 0.367 ± 0.230.","PeriodicalId":7150,"journal":{"name":"Acta Polytechnica CTU Proceedings","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI-assisted study of auxetic structures\",\"authors\":\"Sergej Grednev, Henrik S. Steude, Stefan Bronder, Oliver Niggemann, Anne Jung\",\"doi\":\"10.14311/app.2023.42.0032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the viability of using machine learning models to predict stress-strain curves of auxetic structures based on geometry-describing parameters is explored. Given the computational cost and time associated with generating these curves through numerical simulations, a machine learning-based approach promises a more efficient alternative. A range of machine learning models, including Artificial Neural Networks, k-Nearest Neighbors Regression, Support Vector Regression, and XGBoost, is implemented and compared regarding the aptitude to predict stress-strain curves under quasi-static compressive loading. Training data is generated using validated finite element simulations. The performance of these models is rigorously tested on data not seen during training. The Feed-Forward Artificial Neural Network emerged as the most proficient model, achieving a Mean Absolute Percentage Error of 0.367 ± 0.230.\",\"PeriodicalId\":7150,\"journal\":{\"name\":\"Acta Polytechnica CTU Proceedings\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Polytechnica CTU Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14311/app.2023.42.0032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Polytechnica CTU Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14311/app.2023.42.0032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this study, the viability of using machine learning models to predict stress-strain curves of auxetic structures based on geometry-describing parameters is explored. Given the computational cost and time associated with generating these curves through numerical simulations, a machine learning-based approach promises a more efficient alternative. A range of machine learning models, including Artificial Neural Networks, k-Nearest Neighbors Regression, Support Vector Regression, and XGBoost, is implemented and compared regarding the aptitude to predict stress-strain curves under quasi-static compressive loading. Training data is generated using validated finite element simulations. The performance of these models is rigorously tested on data not seen during training. The Feed-Forward Artificial Neural Network emerged as the most proficient model, achieving a Mean Absolute Percentage Error of 0.367 ± 0.230.