Leila Rezaei, Martin J. Timmerman, Mohssen Moazzen, Uwe Altenberger, Jiří Sláma, Masafumi Sudo, Christina Günter, Franziska D. H. Wilke, Anja M. Schleicher
{"title":"伊朗北部Alborz山脉中白垩世伸展岩浆活动Gasht-Masuleh辉长岩的地球化学和年代学","authors":"Leila Rezaei, Martin J. Timmerman, Mohssen Moazzen, Uwe Altenberger, Jiří Sláma, Masafumi Sudo, Christina Günter, Franziska D. H. Wilke, Anja M. Schleicher","doi":"10.1186/s00015-023-00443-2","DOIUrl":null,"url":null,"abstract":"Abstract In the Gasht-Masuleh area in the Alborz Mountains, gabbroic magma intruded Palaeozoic metasediments and Mesozoic sediments and crystallised as isotropic and cumulate gabbros. LREE enrichment points to relatively low degrees of mantle melting and depletion of Ti, Nb and Ta relative to primitive mantle points to an arc related component in the magma. Clinopyroxene compositions indicate MORB to arc signatures. U–Pb zircon crystallisation ages of 99.5 ± 0.6 Ma and 99.4 ± 0.6 Ma and phlogopite 40 Ar/ 39 Ar ages of 97.1 ± 0.4 Ma, 97.5 ± 0.4 Ma, 97.1 ± 0.1 Ma, within 2σ error, indicate that gabbro intrusion occurred in the (Albian-)Cenomanian (mid-Cretaceous). As active subduction did not take place in the Cretaceous in North Iran, the small volume mafic magmatism in the Gasht-Masuleh area must be due to local, extension-related mantle melting. Melting was most likely caused by far field effects triggered by roll-back of the Neo-Tethys subducting slab. As subduction took place at a distance of ~ 400 km (present distance) from the Alborz Mountains, the observed arc geochemical signatures must be inherited from a previous subduction event and concomitant mantle metasomatism, possibly in combination with contamination of the magma by crustal material.","PeriodicalId":49456,"journal":{"name":"Swiss Journal of Geosciences","volume":"36 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mid-Cretaceous extensional magmatism in the Alborz Mountains, north Iran; geochemistry and geochronology of Gasht-Masuleh gabbros\",\"authors\":\"Leila Rezaei, Martin J. Timmerman, Mohssen Moazzen, Uwe Altenberger, Jiří Sláma, Masafumi Sudo, Christina Günter, Franziska D. H. Wilke, Anja M. Schleicher\",\"doi\":\"10.1186/s00015-023-00443-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the Gasht-Masuleh area in the Alborz Mountains, gabbroic magma intruded Palaeozoic metasediments and Mesozoic sediments and crystallised as isotropic and cumulate gabbros. LREE enrichment points to relatively low degrees of mantle melting and depletion of Ti, Nb and Ta relative to primitive mantle points to an arc related component in the magma. Clinopyroxene compositions indicate MORB to arc signatures. U–Pb zircon crystallisation ages of 99.5 ± 0.6 Ma and 99.4 ± 0.6 Ma and phlogopite 40 Ar/ 39 Ar ages of 97.1 ± 0.4 Ma, 97.5 ± 0.4 Ma, 97.1 ± 0.1 Ma, within 2σ error, indicate that gabbro intrusion occurred in the (Albian-)Cenomanian (mid-Cretaceous). As active subduction did not take place in the Cretaceous in North Iran, the small volume mafic magmatism in the Gasht-Masuleh area must be due to local, extension-related mantle melting. Melting was most likely caused by far field effects triggered by roll-back of the Neo-Tethys subducting slab. As subduction took place at a distance of ~ 400 km (present distance) from the Alborz Mountains, the observed arc geochemical signatures must be inherited from a previous subduction event and concomitant mantle metasomatism, possibly in combination with contamination of the magma by crustal material.\",\"PeriodicalId\":49456,\"journal\":{\"name\":\"Swiss Journal of Geosciences\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Swiss Journal of Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s00015-023-00443-2\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swiss Journal of Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s00015-023-00443-2","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Mid-Cretaceous extensional magmatism in the Alborz Mountains, north Iran; geochemistry and geochronology of Gasht-Masuleh gabbros
Abstract In the Gasht-Masuleh area in the Alborz Mountains, gabbroic magma intruded Palaeozoic metasediments and Mesozoic sediments and crystallised as isotropic and cumulate gabbros. LREE enrichment points to relatively low degrees of mantle melting and depletion of Ti, Nb and Ta relative to primitive mantle points to an arc related component in the magma. Clinopyroxene compositions indicate MORB to arc signatures. U–Pb zircon crystallisation ages of 99.5 ± 0.6 Ma and 99.4 ± 0.6 Ma and phlogopite 40 Ar/ 39 Ar ages of 97.1 ± 0.4 Ma, 97.5 ± 0.4 Ma, 97.1 ± 0.1 Ma, within 2σ error, indicate that gabbro intrusion occurred in the (Albian-)Cenomanian (mid-Cretaceous). As active subduction did not take place in the Cretaceous in North Iran, the small volume mafic magmatism in the Gasht-Masuleh area must be due to local, extension-related mantle melting. Melting was most likely caused by far field effects triggered by roll-back of the Neo-Tethys subducting slab. As subduction took place at a distance of ~ 400 km (present distance) from the Alborz Mountains, the observed arc geochemical signatures must be inherited from a previous subduction event and concomitant mantle metasomatism, possibly in combination with contamination of the magma by crustal material.
期刊介绍:
The Swiss Journal of Geosciences publishes original research and review articles, with a particular focus on the evolution of the Tethys realm and the Alpine/Himalayan orogen. By consolidating the former Eclogae Geologicae Helvetiae and Swiss Bulletin of Mineralogy and Petrology, this international journal covers all disciplines of the solid Earth Sciences, including their practical applications.
The journal gives preference to articles that are of wide interest to the international research community, while at the same time recognising the importance of documenting high-quality geoscientific data in a regional context, including the occasional publication of maps.