{"title":"整数分配问题的效率与Jain公平性指标","authors":"Nahid Rezaeinia, Julio C. Góez, Mario Guajardo","doi":"10.1007/s10287-023-00477-9","DOIUrl":null,"url":null,"abstract":"Abstract Given two sets of objects, the integer assignment problem consists of assigning objects of one set to objects in the other set. Traditionally, the goal of this problem is to find an assignment that minimizes or maximizes a measure of efficiency, such as maximization of utility or minimization of cost. Lately, the interest in incorporating a measure of fairness in addition to efficiency has gained importance. This paper studies how to incorporate these two criteria in an integer assignment, using the Jain’s index as a measure of fairness. The original formulation of the assignment problem with this index involves a non-concave function, which renders a non-linear non-convex problem, usually hard to solve. To this aim, we develop two reformulations, where one is based on a quadratic objective function and the other one is based on integer second-order cone programming. We explore the performance of these reformulations in instances of real-world data derived from an application of assigning personnel to projects, and also in instances of randomly generated data. In terms of solution quality, all formulations prove to be effective in finding solutions capturing both efficiency and fairness criteria, with some slight differences depending on the type of instance. In terms of solving time, however, the performances of the formulations differ considerably. In particular, the integer quadratic approach proves to be much faster in finding optimal solutions.","PeriodicalId":46743,"journal":{"name":"Computational Management Science","volume":"22 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On efficiency and the Jain’s fairness index in integer assignment problems\",\"authors\":\"Nahid Rezaeinia, Julio C. Góez, Mario Guajardo\",\"doi\":\"10.1007/s10287-023-00477-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Given two sets of objects, the integer assignment problem consists of assigning objects of one set to objects in the other set. Traditionally, the goal of this problem is to find an assignment that minimizes or maximizes a measure of efficiency, such as maximization of utility or minimization of cost. Lately, the interest in incorporating a measure of fairness in addition to efficiency has gained importance. This paper studies how to incorporate these two criteria in an integer assignment, using the Jain’s index as a measure of fairness. The original formulation of the assignment problem with this index involves a non-concave function, which renders a non-linear non-convex problem, usually hard to solve. To this aim, we develop two reformulations, where one is based on a quadratic objective function and the other one is based on integer second-order cone programming. We explore the performance of these reformulations in instances of real-world data derived from an application of assigning personnel to projects, and also in instances of randomly generated data. In terms of solution quality, all formulations prove to be effective in finding solutions capturing both efficiency and fairness criteria, with some slight differences depending on the type of instance. In terms of solving time, however, the performances of the formulations differ considerably. In particular, the integer quadratic approach proves to be much faster in finding optimal solutions.\",\"PeriodicalId\":46743,\"journal\":{\"name\":\"Computational Management Science\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Management Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10287-023-00477-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Management Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10287-023-00477-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
On efficiency and the Jain’s fairness index in integer assignment problems
Abstract Given two sets of objects, the integer assignment problem consists of assigning objects of one set to objects in the other set. Traditionally, the goal of this problem is to find an assignment that minimizes or maximizes a measure of efficiency, such as maximization of utility or minimization of cost. Lately, the interest in incorporating a measure of fairness in addition to efficiency has gained importance. This paper studies how to incorporate these two criteria in an integer assignment, using the Jain’s index as a measure of fairness. The original formulation of the assignment problem with this index involves a non-concave function, which renders a non-linear non-convex problem, usually hard to solve. To this aim, we develop two reformulations, where one is based on a quadratic objective function and the other one is based on integer second-order cone programming. We explore the performance of these reformulations in instances of real-world data derived from an application of assigning personnel to projects, and also in instances of randomly generated data. In terms of solution quality, all formulations prove to be effective in finding solutions capturing both efficiency and fairness criteria, with some slight differences depending on the type of instance. In terms of solving time, however, the performances of the formulations differ considerably. In particular, the integer quadratic approach proves to be much faster in finding optimal solutions.
期刊介绍:
Computational Management Science (CMS) is an international journal focusing on all computational aspects of management science. These include theoretical and empirical analysis of computational models; computational statistics; analysis and applications of constrained, unconstrained, robust, stochastic and combinatorial optimisation algorithms; dynamic models, such as dynamic programming and decision trees; new search tools and algorithms for global optimisation, modelling, learning and forecasting; models and tools of knowledge acquisition.
The emphasis on computational paradigms is an intended feature of CMS, distinguishing it from more classical operations research journals.
Officially cited as: Comput Manag Sci