Adam M. M. Stuckert, Layla Freeborn, Kimberly A. Howell, Yusan Yang, Rasmus Nielsen, Corinne Richards-Zawacki, Matthew D. MacManes
{"title":"发育过程中的转录组学分析揭示了被膜结构和颜色产生的机制","authors":"Adam M. M. Stuckert, Layla Freeborn, Kimberly A. Howell, Yusan Yang, Rasmus Nielsen, Corinne Richards-Zawacki, Matthew D. MacManes","doi":"10.1007/s10682-023-10256-2","DOIUrl":null,"url":null,"abstract":"Abstract Skin coloration and patterning play a key role in animal survival and reproduction. As a result, color phenotypes have generated intense research interest. In aposematic species, color phenotypes can be important in avoiding predation and in mate choice. However, we still know little about the underlying genetic mechanisms of color production, particularly outside of a few model organisms. Here we seek to understand the genetic mechanisms underlying the production of different colors and how these undergo shifting expression patterns throughout development. To answer this, we examine gene expression of two different color patches(yellow and green) in a developmental time series from young tadpoles through adults in the poison frog Oophaga pumilio. We identified six genes that were differentially expressed between color patches in every developmental stage ( casq1, hand2, myh8, prva, tbx3, and zic1). Of these, hand2, myh8, tbx3, and zic1 have either been identified or implicated as important in coloration in other taxa. Casq1 and prva buffer Ca 2+ and are a Ca 2+ transporter, respectively, and may play a role in preventing autotoxicity to pumiliotoxins, which inhibit Ca 2+ -ATPase activity. We identify further candidate genes (e.g., adh, aldh1a2, asip, lef1, mc1r, tyr, tyrp1, xdh ), and identify a suite of hub genes that likely play a key role in integumental reorganization during development (e.g., collagen type I–IV genes, lysyl oxidases) which may also affect coloration via structural organization of chromatophores that contribute to color and pattern. Overall, we identify the putative role of a suite of candidate genes in the production of different color types in a polytypic, aposematic species.","PeriodicalId":55158,"journal":{"name":"Evolutionary Ecology","volume":"41 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcriptomic analyses during development reveal mechanisms of integument structuring and color production\",\"authors\":\"Adam M. M. Stuckert, Layla Freeborn, Kimberly A. Howell, Yusan Yang, Rasmus Nielsen, Corinne Richards-Zawacki, Matthew D. MacManes\",\"doi\":\"10.1007/s10682-023-10256-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Skin coloration and patterning play a key role in animal survival and reproduction. As a result, color phenotypes have generated intense research interest. In aposematic species, color phenotypes can be important in avoiding predation and in mate choice. However, we still know little about the underlying genetic mechanisms of color production, particularly outside of a few model organisms. Here we seek to understand the genetic mechanisms underlying the production of different colors and how these undergo shifting expression patterns throughout development. To answer this, we examine gene expression of two different color patches(yellow and green) in a developmental time series from young tadpoles through adults in the poison frog Oophaga pumilio. We identified six genes that were differentially expressed between color patches in every developmental stage ( casq1, hand2, myh8, prva, tbx3, and zic1). Of these, hand2, myh8, tbx3, and zic1 have either been identified or implicated as important in coloration in other taxa. Casq1 and prva buffer Ca 2+ and are a Ca 2+ transporter, respectively, and may play a role in preventing autotoxicity to pumiliotoxins, which inhibit Ca 2+ -ATPase activity. We identify further candidate genes (e.g., adh, aldh1a2, asip, lef1, mc1r, tyr, tyrp1, xdh ), and identify a suite of hub genes that likely play a key role in integumental reorganization during development (e.g., collagen type I–IV genes, lysyl oxidases) which may also affect coloration via structural organization of chromatophores that contribute to color and pattern. Overall, we identify the putative role of a suite of candidate genes in the production of different color types in a polytypic, aposematic species.\",\"PeriodicalId\":55158,\"journal\":{\"name\":\"Evolutionary Ecology\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolutionary Ecology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10682-023-10256-2\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Ecology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10682-023-10256-2","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
Transcriptomic analyses during development reveal mechanisms of integument structuring and color production
Abstract Skin coloration and patterning play a key role in animal survival and reproduction. As a result, color phenotypes have generated intense research interest. In aposematic species, color phenotypes can be important in avoiding predation and in mate choice. However, we still know little about the underlying genetic mechanisms of color production, particularly outside of a few model organisms. Here we seek to understand the genetic mechanisms underlying the production of different colors and how these undergo shifting expression patterns throughout development. To answer this, we examine gene expression of two different color patches(yellow and green) in a developmental time series from young tadpoles through adults in the poison frog Oophaga pumilio. We identified six genes that were differentially expressed between color patches in every developmental stage ( casq1, hand2, myh8, prva, tbx3, and zic1). Of these, hand2, myh8, tbx3, and zic1 have either been identified or implicated as important in coloration in other taxa. Casq1 and prva buffer Ca 2+ and are a Ca 2+ transporter, respectively, and may play a role in preventing autotoxicity to pumiliotoxins, which inhibit Ca 2+ -ATPase activity. We identify further candidate genes (e.g., adh, aldh1a2, asip, lef1, mc1r, tyr, tyrp1, xdh ), and identify a suite of hub genes that likely play a key role in integumental reorganization during development (e.g., collagen type I–IV genes, lysyl oxidases) which may also affect coloration via structural organization of chromatophores that contribute to color and pattern. Overall, we identify the putative role of a suite of candidate genes in the production of different color types in a polytypic, aposematic species.
期刊介绍:
Evolutionary Ecology is a concept-oriented journal of biological research at the interface of ecology and evolution. We publish papers that therefore integrate both fields of research: research that seeks to explain the ecology of organisms in the context of evolution, or patterns of evolution as explained by ecological processes.
The journal publishes original research and discussion concerning the evolutionary ecology of organisms. These may include papers addressing evolutionary aspects of population ecology, organismal interactions and coevolution, behaviour, life histories, communication, morphology, host-parasite interactions and disease ecology, as well as ecological aspects of genetic processes. The objective is to promote the conceptual, theoretical and empirical development of ecology and evolutionary biology; the scope extends to any organism or system.
In additional to Original Research articles, we publish Review articles that survey recent developments in the field of evolutionary ecology; Ideas & Perspectives articles which present new points of view and novel hypotheses; and Comments on articles recently published in Evolutionary Ecology or elsewhere. We also welcome New Tests of Existing Ideas - testing well-established hypotheses but with broader data or more methodologically rigorous approaches; - and shorter Natural History Notes, which aim to present new observations of organismal biology in the wild that may provide inspiration for future research. As of 2018, we now also invite Methods papers, to present or review new theoretical, practical or analytical methods used in evolutionary ecology.
Students & Early Career Researchers: We particularly encourage, and offer incentives for, submission of Reviews, Ideas & Perspectives, and Methods papers by students and early-career researchers (defined as being within one year of award of a PhD degree) – see Students & Early Career Researchers