{"title":"一种具有非均匀时间反馈的递归系统辨识方法","authors":"Jinhua Ouyang, Xu Chen","doi":"10.1115/1.4063481","DOIUrl":null,"url":null,"abstract":"Abstract We present a system identification method based on recursive least-squares (RLS) and coprime collaborative sensing, which can recover system dynamics from non-uniform temporal data. Focusing on systems with fast input sampling and slow output sampling, we use a polynomial transformation to reparameterize the system model and create an auxiliary model that can be identified from the non-uniform data. We show the identifiability of the auxiliary model using a Diophantine-equation approach. Numerical examples demonstrate successful system reconstruction and the ability to capture fast system response with limited temporal feedback.","PeriodicalId":327130,"journal":{"name":"ASME Letters in Dynamic Systems and Control","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Recursive System Identification with Non-uniform Temporal Feedback under Coprime Collaborative Sensing\",\"authors\":\"Jinhua Ouyang, Xu Chen\",\"doi\":\"10.1115/1.4063481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We present a system identification method based on recursive least-squares (RLS) and coprime collaborative sensing, which can recover system dynamics from non-uniform temporal data. Focusing on systems with fast input sampling and slow output sampling, we use a polynomial transformation to reparameterize the system model and create an auxiliary model that can be identified from the non-uniform data. We show the identifiability of the auxiliary model using a Diophantine-equation approach. Numerical examples demonstrate successful system reconstruction and the ability to capture fast system response with limited temporal feedback.\",\"PeriodicalId\":327130,\"journal\":{\"name\":\"ASME Letters in Dynamic Systems and Control\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME Letters in Dynamic Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME Letters in Dynamic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Recursive System Identification with Non-uniform Temporal Feedback under Coprime Collaborative Sensing
Abstract We present a system identification method based on recursive least-squares (RLS) and coprime collaborative sensing, which can recover system dynamics from non-uniform temporal data. Focusing on systems with fast input sampling and slow output sampling, we use a polynomial transformation to reparameterize the system model and create an auxiliary model that can be identified from the non-uniform data. We show the identifiability of the auxiliary model using a Diophantine-equation approach. Numerical examples demonstrate successful system reconstruction and the ability to capture fast system response with limited temporal feedback.