{"title":"激光功率比对选择性激光烧结三维样机烧结性能和物理性能的影响","authors":"Twinkle Gharate, Tukaram Karanwad, Srushti Lekurwale, Subham Banerjee","doi":"10.2217/3dp-2023-0007","DOIUrl":null,"url":null,"abstract":"Aim: This study was intended to investigate the effect of laser power ratios (LPRs) on the sinterability and sintering performance of selective laser sintering (SLS) mediated 3D prototypes. Materials & methods: Physical mixtures (PMs) containing Kollidon SR (98.75% w/w) and IR-absorbing dye (1.25% w/w) were evaluated for flow characteristics and particle size. The same PMs were subjected to SLS-mediated prototyping at constant printing temperatures (feed bed temperature 30°C and print bed temperature 40°C) over a range of LPRs. Results & conclusion: With favoured particle size and flow properties, this PMs was found to be suitable for SLS-mediated 3D printing. Sinterability and sintering performance were improved incrementally throughout the range of studied LPRs. The best sintering performance in terms of dimensional accuracy and printing yield was achieved at the highest LPR (3.0). Scanning electron microscopy (SEM) depicted topography of cross-sectioned sintered printlets.","PeriodicalId":73578,"journal":{"name":"Journal of 3D printing in medicine","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of laser power ratios on sinterability and physical properties of 3D prototypes sintered using selective laser sintering\",\"authors\":\"Twinkle Gharate, Tukaram Karanwad, Srushti Lekurwale, Subham Banerjee\",\"doi\":\"10.2217/3dp-2023-0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aim: This study was intended to investigate the effect of laser power ratios (LPRs) on the sinterability and sintering performance of selective laser sintering (SLS) mediated 3D prototypes. Materials & methods: Physical mixtures (PMs) containing Kollidon SR (98.75% w/w) and IR-absorbing dye (1.25% w/w) were evaluated for flow characteristics and particle size. The same PMs were subjected to SLS-mediated prototyping at constant printing temperatures (feed bed temperature 30°C and print bed temperature 40°C) over a range of LPRs. Results & conclusion: With favoured particle size and flow properties, this PMs was found to be suitable for SLS-mediated 3D printing. Sinterability and sintering performance were improved incrementally throughout the range of studied LPRs. The best sintering performance in terms of dimensional accuracy and printing yield was achieved at the highest LPR (3.0). Scanning electron microscopy (SEM) depicted topography of cross-sectioned sintered printlets.\",\"PeriodicalId\":73578,\"journal\":{\"name\":\"Journal of 3D printing in medicine\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of 3D printing in medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2217/3dp-2023-0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of 3D printing in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2217/3dp-2023-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
目的:研究激光功率比(LPRs)对选择性激光烧结(SLS)介导的3D原型材料烧结性能和烧结性能的影响。材料,方法:对含Kollidon SR (98.75% w/w)和ir - absorption dye (1.25% w/w)的物理混合物(pm)的流动特性和粒径进行评价。在一定的lpr范围内,在恒定的打印温度(进料床温度30°C,打印床温度40°C)下,对相同的pm进行sls介导的原型制作。结果,结论:该材料具有良好的粒径和流动特性,适合于sls介导的3D打印。在研究的LPRs范围内,烧结性能和烧结性能逐渐提高。在最高LPR(3.0)时,烧结尺寸精度和打印良率均达到最佳。扫描电子显微镜(SEM)描绘了烧结小块的横截面形貌。
Effect of laser power ratios on sinterability and physical properties of 3D prototypes sintered using selective laser sintering
Aim: This study was intended to investigate the effect of laser power ratios (LPRs) on the sinterability and sintering performance of selective laser sintering (SLS) mediated 3D prototypes. Materials & methods: Physical mixtures (PMs) containing Kollidon SR (98.75% w/w) and IR-absorbing dye (1.25% w/w) were evaluated for flow characteristics and particle size. The same PMs were subjected to SLS-mediated prototyping at constant printing temperatures (feed bed temperature 30°C and print bed temperature 40°C) over a range of LPRs. Results & conclusion: With favoured particle size and flow properties, this PMs was found to be suitable for SLS-mediated 3D printing. Sinterability and sintering performance were improved incrementally throughout the range of studied LPRs. The best sintering performance in terms of dimensional accuracy and printing yield was achieved at the highest LPR (3.0). Scanning electron microscopy (SEM) depicted topography of cross-sectioned sintered printlets.