Vincent Amarh, Benaiah Annertey Abbey, Samuel Akwasi Acheampong, Michael Acheampong Debrah, Gwendolyn Nita Amarquaye, Patrick Kobina Arthur
{"title":"可待因在大肠杆菌DNA双链断裂中失调核糖体的生物发生,为开发新型抗生素指明了道路","authors":"Vincent Amarh, Benaiah Annertey Abbey, Samuel Akwasi Acheampong, Michael Acheampong Debrah, Gwendolyn Nita Amarquaye, Patrick Kobina Arthur","doi":"10.4155/fdd-2023-0005","DOIUrl":null,"url":null,"abstract":"Aim: A bacterial genetics-guided approach was utilized for the discovery of new compounds affecting bacterial genome stability. Materials & methods: Fungal extracts and fractions were tested for genome instability-mediated antibacterial activity. Interaction assays and RT-qPCR were used to identify compounds that boost the activity of sub-minimum inhibitory concentration streptomycin and obtain insights on the molecular mechanisms of the primary hit compound, respectively. Results: Several extracts and fractions caused bacterial genome instability. Codeine, in synergy with streptomycin, regulates double-strand break (DSB) repair and causes bacterial ribosome dysfunction in the absence of DSBs, and dysregulation of ribosome biogenesis in a DSB-dependent manner. Conclusion: This study demonstrates a potential viable strategy that we are exploring for the discovery of new chemical entities with activities against Escherichia coli and other bacterial pathogens.","PeriodicalId":73122,"journal":{"name":"Future drug discovery","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Codeine dysregulates ribosome biogenesis in <i>Escherichia coli</i> with DNA double-strand breaks to chart path to new classes of antibiotics\",\"authors\":\"Vincent Amarh, Benaiah Annertey Abbey, Samuel Akwasi Acheampong, Michael Acheampong Debrah, Gwendolyn Nita Amarquaye, Patrick Kobina Arthur\",\"doi\":\"10.4155/fdd-2023-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aim: A bacterial genetics-guided approach was utilized for the discovery of new compounds affecting bacterial genome stability. Materials & methods: Fungal extracts and fractions were tested for genome instability-mediated antibacterial activity. Interaction assays and RT-qPCR were used to identify compounds that boost the activity of sub-minimum inhibitory concentration streptomycin and obtain insights on the molecular mechanisms of the primary hit compound, respectively. Results: Several extracts and fractions caused bacterial genome instability. Codeine, in synergy with streptomycin, regulates double-strand break (DSB) repair and causes bacterial ribosome dysfunction in the absence of DSBs, and dysregulation of ribosome biogenesis in a DSB-dependent manner. Conclusion: This study demonstrates a potential viable strategy that we are exploring for the discovery of new chemical entities with activities against Escherichia coli and other bacterial pathogens.\",\"PeriodicalId\":73122,\"journal\":{\"name\":\"Future drug discovery\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future drug discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4155/fdd-2023-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future drug discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4155/fdd-2023-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Codeine dysregulates ribosome biogenesis in Escherichia coli with DNA double-strand breaks to chart path to new classes of antibiotics
Aim: A bacterial genetics-guided approach was utilized for the discovery of new compounds affecting bacterial genome stability. Materials & methods: Fungal extracts and fractions were tested for genome instability-mediated antibacterial activity. Interaction assays and RT-qPCR were used to identify compounds that boost the activity of sub-minimum inhibitory concentration streptomycin and obtain insights on the molecular mechanisms of the primary hit compound, respectively. Results: Several extracts and fractions caused bacterial genome instability. Codeine, in synergy with streptomycin, regulates double-strand break (DSB) repair and causes bacterial ribosome dysfunction in the absence of DSBs, and dysregulation of ribosome biogenesis in a DSB-dependent manner. Conclusion: This study demonstrates a potential viable strategy that we are exploring for the discovery of new chemical entities with activities against Escherichia coli and other bacterial pathogens.