{"title":"斜冲击引起板颤振特性变化的机理","authors":"Xianzong Meng, Kun Ye, Zhengyin Ye","doi":"10.1177/09544100231195377","DOIUrl":null,"url":null,"abstract":"Compared to the shock-free condition, the weak shock impingement stabilizes the flexible panel, while the strong shock impingement leads to the early onset of panel flutter with a significant increase in flutter amplitude and frequency. However, the reason for this change by shock impingement remains unclear. The current research examines the mechanism of this change by an in-house code where the von Kármán’s large deflection plate theory is coupled with two-dimensional Euler equations. Compared to the shock-free condition, the oblique shock impingement leads to the change of local dynamic pressure on the panel as well as the static pressure differential across the panel. The analysis on the influence of these changes indicates that, on the one hand, the average dynamic pressure on the panel becomes larger than the shock-free condition, accelerating the onset of panel flutter. On the other hand, the change of the static pressure differential across the panel alters the coupling characteristic between different natural frequencies (modes) of the panel structure. The dynamic response of panel flutter under shock impingements is dominated by the coupling between the second and third modes instead of the first two modes for panel flutter under the shock-free condition. The combined effect of these two changes leads to the change of flutter characteristics of the panel under shock impingement. These findings provide valuable insights into the mechanism of shock-induced panel flutter.","PeriodicalId":54566,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","volume":"45 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanism of characteristic change of panel flutter caused by oblique shock impingement\",\"authors\":\"Xianzong Meng, Kun Ye, Zhengyin Ye\",\"doi\":\"10.1177/09544100231195377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compared to the shock-free condition, the weak shock impingement stabilizes the flexible panel, while the strong shock impingement leads to the early onset of panel flutter with a significant increase in flutter amplitude and frequency. However, the reason for this change by shock impingement remains unclear. The current research examines the mechanism of this change by an in-house code where the von Kármán’s large deflection plate theory is coupled with two-dimensional Euler equations. Compared to the shock-free condition, the oblique shock impingement leads to the change of local dynamic pressure on the panel as well as the static pressure differential across the panel. The analysis on the influence of these changes indicates that, on the one hand, the average dynamic pressure on the panel becomes larger than the shock-free condition, accelerating the onset of panel flutter. On the other hand, the change of the static pressure differential across the panel alters the coupling characteristic between different natural frequencies (modes) of the panel structure. The dynamic response of panel flutter under shock impingements is dominated by the coupling between the second and third modes instead of the first two modes for panel flutter under the shock-free condition. The combined effect of these two changes leads to the change of flutter characteristics of the panel under shock impingement. These findings provide valuable insights into the mechanism of shock-induced panel flutter.\",\"PeriodicalId\":54566,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/09544100231195377\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09544100231195377","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Mechanism of characteristic change of panel flutter caused by oblique shock impingement
Compared to the shock-free condition, the weak shock impingement stabilizes the flexible panel, while the strong shock impingement leads to the early onset of panel flutter with a significant increase in flutter amplitude and frequency. However, the reason for this change by shock impingement remains unclear. The current research examines the mechanism of this change by an in-house code where the von Kármán’s large deflection plate theory is coupled with two-dimensional Euler equations. Compared to the shock-free condition, the oblique shock impingement leads to the change of local dynamic pressure on the panel as well as the static pressure differential across the panel. The analysis on the influence of these changes indicates that, on the one hand, the average dynamic pressure on the panel becomes larger than the shock-free condition, accelerating the onset of panel flutter. On the other hand, the change of the static pressure differential across the panel alters the coupling characteristic between different natural frequencies (modes) of the panel structure. The dynamic response of panel flutter under shock impingements is dominated by the coupling between the second and third modes instead of the first two modes for panel flutter under the shock-free condition. The combined effect of these two changes leads to the change of flutter characteristics of the panel under shock impingement. These findings provide valuable insights into the mechanism of shock-induced panel flutter.
期刊介绍:
The Journal of Aerospace Engineering is dedicated to the publication of high quality research in all branches of applied sciences and technology dealing with aircraft and spacecraft, and their support systems. "Our authorship is truly international and all efforts are made to ensure that each paper is presented in the best possible way and reaches a wide audience.
"The Editorial Board is composed of recognized experts representing the technical communities of fifteen countries. The Board Members work in close cooperation with the editors, reviewers, and authors to achieve a consistent standard of well written and presented papers."Professor Rodrigo Martinez-Val, Universidad Politécnica de Madrid, Spain
This journal is a member of the Committee on Publication Ethics (COPE).