None Omar Hashim Yahya, None Vladimir Vitalievich Alekseev, None Denis Vyacheslavovich Lakomov, None Olga Vladimirovna Fomina, None Irina Sergeevna Iskevich, None Elena Alexandrovna Frolova, None Elena Yurievna Kutimova
{"title":"基于深度学习的动态心电图七导联心电信号心律失常检测方法","authors":"None Omar Hashim Yahya, None Vladimir Vitalievich Alekseev, None Denis Vyacheslavovich Lakomov, None Olga Vladimirovna Fomina, None Irina Sergeevna Iskevich, None Elena Alexandrovna Frolova, None Elena Yurievna Kutimova","doi":"10.3991/ijoe.v19i14.43059","DOIUrl":null,"url":null,"abstract":"Cardiac arrhythmias are abnormalities caused by irregularities in the heart’s electrical conduction system. Cardiovascular diseases (CVD) have been identified as the leading cause of death worldwide. Premature ventricular contraction (PVC) is one of these diseases. It is an arrhythmia that can be linked to a several heart diseases that affect between 40% and 75% of the population. Ventricular bigeminy occurs when one or two premature beats are detected on an electrocardiogram when there is ventricular contraction between two normal heartbeats or trigeminy. The appearance of ventricular bigeminy or trigeminy rhythms is related to angina. Myocardial infarction, hypertension, and congestive heart failure are also possible conditions. Based on deep learning, this paper proposes creating a robust approach for automatically detecting and classifying cardiovascular arrhythmias in long-term electrocardiogram (ECG) recordings from halters based on deep learning (DL). We present a convolutional neural network (CNN) and long-short-time memory (LSTM) model that identifies cardiovascular arrhythmias. We have designed and implemented the proposed model using Python. The model was trained and validated on a database that includes a total of 17 long-recorded ECG signals (24 h) from 17 subjects, which were obtained from Yfa Hospital. The signals were recorded with seven leads holter. The CNN classifier achieved an accuracy of 91.14% as a final result, validated through a 10-fold cross-validation. Moreover, the proposed model was found to be capable of analyzing ECG recordings to classify multiple cardiovascular arrhythmias in the ECG record signals efficiently.","PeriodicalId":36900,"journal":{"name":"International Journal of Online and Biomedical Engineering","volume":"26 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning Approach for Detecting Cardiovascular Arrhythmias in Seven Lead ECG Signal from Holter\",\"authors\":\"None Omar Hashim Yahya, None Vladimir Vitalievich Alekseev, None Denis Vyacheslavovich Lakomov, None Olga Vladimirovna Fomina, None Irina Sergeevna Iskevich, None Elena Alexandrovna Frolova, None Elena Yurievna Kutimova\",\"doi\":\"10.3991/ijoe.v19i14.43059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cardiac arrhythmias are abnormalities caused by irregularities in the heart’s electrical conduction system. Cardiovascular diseases (CVD) have been identified as the leading cause of death worldwide. Premature ventricular contraction (PVC) is one of these diseases. It is an arrhythmia that can be linked to a several heart diseases that affect between 40% and 75% of the population. Ventricular bigeminy occurs when one or two premature beats are detected on an electrocardiogram when there is ventricular contraction between two normal heartbeats or trigeminy. The appearance of ventricular bigeminy or trigeminy rhythms is related to angina. Myocardial infarction, hypertension, and congestive heart failure are also possible conditions. Based on deep learning, this paper proposes creating a robust approach for automatically detecting and classifying cardiovascular arrhythmias in long-term electrocardiogram (ECG) recordings from halters based on deep learning (DL). We present a convolutional neural network (CNN) and long-short-time memory (LSTM) model that identifies cardiovascular arrhythmias. We have designed and implemented the proposed model using Python. The model was trained and validated on a database that includes a total of 17 long-recorded ECG signals (24 h) from 17 subjects, which were obtained from Yfa Hospital. The signals were recorded with seven leads holter. The CNN classifier achieved an accuracy of 91.14% as a final result, validated through a 10-fold cross-validation. Moreover, the proposed model was found to be capable of analyzing ECG recordings to classify multiple cardiovascular arrhythmias in the ECG record signals efficiently.\",\"PeriodicalId\":36900,\"journal\":{\"name\":\"International Journal of Online and Biomedical Engineering\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Online and Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3991/ijoe.v19i14.43059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Online and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3991/ijoe.v19i14.43059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Deep Learning Approach for Detecting Cardiovascular Arrhythmias in Seven Lead ECG Signal from Holter
Cardiac arrhythmias are abnormalities caused by irregularities in the heart’s electrical conduction system. Cardiovascular diseases (CVD) have been identified as the leading cause of death worldwide. Premature ventricular contraction (PVC) is one of these diseases. It is an arrhythmia that can be linked to a several heart diseases that affect between 40% and 75% of the population. Ventricular bigeminy occurs when one or two premature beats are detected on an electrocardiogram when there is ventricular contraction between two normal heartbeats or trigeminy. The appearance of ventricular bigeminy or trigeminy rhythms is related to angina. Myocardial infarction, hypertension, and congestive heart failure are also possible conditions. Based on deep learning, this paper proposes creating a robust approach for automatically detecting and classifying cardiovascular arrhythmias in long-term electrocardiogram (ECG) recordings from halters based on deep learning (DL). We present a convolutional neural network (CNN) and long-short-time memory (LSTM) model that identifies cardiovascular arrhythmias. We have designed and implemented the proposed model using Python. The model was trained and validated on a database that includes a total of 17 long-recorded ECG signals (24 h) from 17 subjects, which were obtained from Yfa Hospital. The signals were recorded with seven leads holter. The CNN classifier achieved an accuracy of 91.14% as a final result, validated through a 10-fold cross-validation. Moreover, the proposed model was found to be capable of analyzing ECG recordings to classify multiple cardiovascular arrhythmias in the ECG record signals efficiently.