稀疏局部Lipschitz预测器的对抗鲁棒性

IF 1.9 Q1 MATHEMATICS, APPLIED SIAM journal on mathematics of data science Pub Date : 2023-10-30 DOI:10.1137/22m1478835
Ramchandran Muthukumar, Jeremias Sulam
{"title":"稀疏局部Lipschitz预测器的对抗鲁棒性","authors":"Ramchandran Muthukumar, Jeremias Sulam","doi":"10.1137/22m1478835","DOIUrl":null,"url":null,"abstract":"This work studies the adversarial robustness of parametric functions composed of a linear predictor and a nonlinear representation map. Our analysis relies on sparse local Lipschitzness (SLL), an extension of local Lipschitz continuity that better captures the stability and reduced effective dimensionality of predictors upon local perturbations. SLL functions preserve a certain degree of structure, given by the sparsity pattern in the representation map, and include several popular hypothesis classes, such as piecewise linear models, Lasso and its variants, and deep feedforward ReLU networks. Compared with traditional Lipschitz analysis, we provide a tighter robustness certificate on the minimal energy of an adversarial example, as well as tighter data-dependent nonuniform bounds on the robust generalization error of these predictors. We instantiate these results for the case of deep neural networks and provide numerical evidence that supports our results, shedding new insights into natural regularization strategies to increase the robustness of these models.","PeriodicalId":74797,"journal":{"name":"SIAM journal on mathematics of data science","volume":"971 ","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Adversarial Robustness of Sparse Local Lipschitz Predictors\",\"authors\":\"Ramchandran Muthukumar, Jeremias Sulam\",\"doi\":\"10.1137/22m1478835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work studies the adversarial robustness of parametric functions composed of a linear predictor and a nonlinear representation map. Our analysis relies on sparse local Lipschitzness (SLL), an extension of local Lipschitz continuity that better captures the stability and reduced effective dimensionality of predictors upon local perturbations. SLL functions preserve a certain degree of structure, given by the sparsity pattern in the representation map, and include several popular hypothesis classes, such as piecewise linear models, Lasso and its variants, and deep feedforward ReLU networks. Compared with traditional Lipschitz analysis, we provide a tighter robustness certificate on the minimal energy of an adversarial example, as well as tighter data-dependent nonuniform bounds on the robust generalization error of these predictors. We instantiate these results for the case of deep neural networks and provide numerical evidence that supports our results, shedding new insights into natural regularization strategies to increase the robustness of these models.\",\"PeriodicalId\":74797,\"journal\":{\"name\":\"SIAM journal on mathematics of data science\",\"volume\":\"971 \",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM journal on mathematics of data science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1478835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM journal on mathematics of data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1478835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 8

摘要

本文研究了由线性预测器和非线性表示映射组成的参数函数的对抗鲁棒性。我们的分析依赖于稀疏局部Lipschitz (SLL),这是局部Lipschitz连续性的一种扩展,可以更好地捕获局部扰动下预测器的稳定性和降低的有效维数。SLL函数保留了一定程度的结构,由表示图中的稀疏模式给出,并包括几个流行的假设类,如分段线性模型、Lasso及其变体和深度前馈ReLU网络。与传统的Lipschitz分析相比,我们提供了一个更严格的对抗性样本最小能量的鲁棒性证明,以及这些预测器的鲁棒泛化误差的更严格的数据依赖非一致界。我们为深度神经网络实例化了这些结果,并提供了支持我们结果的数值证据,为自然正则化策略提供了新的见解,以增加这些模型的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adversarial Robustness of Sparse Local Lipschitz Predictors
This work studies the adversarial robustness of parametric functions composed of a linear predictor and a nonlinear representation map. Our analysis relies on sparse local Lipschitzness (SLL), an extension of local Lipschitz continuity that better captures the stability and reduced effective dimensionality of predictors upon local perturbations. SLL functions preserve a certain degree of structure, given by the sparsity pattern in the representation map, and include several popular hypothesis classes, such as piecewise linear models, Lasso and its variants, and deep feedforward ReLU networks. Compared with traditional Lipschitz analysis, we provide a tighter robustness certificate on the minimal energy of an adversarial example, as well as tighter data-dependent nonuniform bounds on the robust generalization error of these predictors. We instantiate these results for the case of deep neural networks and provide numerical evidence that supports our results, shedding new insights into natural regularization strategies to increase the robustness of these models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Entropic Optimal Transport on Random Graphs A Universal Trade-off Between the Model Size, Test Loss, and Training Loss of Linear Predictors Approximating Probability Distributions by Using Wasserstein Generative Adversarial Networks Adversarial Robustness of Sparse Local Lipschitz Predictors The GenCol Algorithm for High-Dimensional Optimal Transport: General Formulation and Application to Barycenters and Wasserstein Splines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1