{"title":"基于图像特征的运动图像脑电数据分类研究进展","authors":"Cagatay Murat Yilmaz, Bahar Hatipoglu Yilmaz","doi":"10.18280/ts.400507","DOIUrl":null,"url":null,"abstract":"Non-invasive acquisition and analysis of human brain signals play a crucial role in the development of brain-computer interfaces, enabling their widespread applicability in daily life. Motor imagery has emerged as a prominent technique for the advancement of such interfaces. While initial machine and deep learning studies have shown promising results in the context of motor imagery, several challenges remain to be addressed prior to their extensive adoption. Deep learning, renowned for its automated feature extraction and classification capabilities, has been successfully employed in various domains. Notably, recent research efforts have focused on processing and classifying motor imagery EEG signals using two-dimensional data formats, yielding noteworthy advancements. Although existing literature encompasses reviews primarily centered on machine learning or deep learning techniques, this paper uniquely emphasizes the review of methods for constructing two-dimensional image features, marking the first comprehensive exploration of this subject. In this study, we present an overview of datasets, survey a range of signal-to-image conversion methods, and discuss classification approaches. Furthermore, we comprehensively examine the current challenges and outline future directions for this research domain.","PeriodicalId":49430,"journal":{"name":"Traitement Du Signal","volume":"31 ","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancements in Image Feature-Based Classification of Motor Imagery EEG Data: A Comprehensive Review\",\"authors\":\"Cagatay Murat Yilmaz, Bahar Hatipoglu Yilmaz\",\"doi\":\"10.18280/ts.400507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-invasive acquisition and analysis of human brain signals play a crucial role in the development of brain-computer interfaces, enabling their widespread applicability in daily life. Motor imagery has emerged as a prominent technique for the advancement of such interfaces. While initial machine and deep learning studies have shown promising results in the context of motor imagery, several challenges remain to be addressed prior to their extensive adoption. Deep learning, renowned for its automated feature extraction and classification capabilities, has been successfully employed in various domains. Notably, recent research efforts have focused on processing and classifying motor imagery EEG signals using two-dimensional data formats, yielding noteworthy advancements. Although existing literature encompasses reviews primarily centered on machine learning or deep learning techniques, this paper uniquely emphasizes the review of methods for constructing two-dimensional image features, marking the first comprehensive exploration of this subject. In this study, we present an overview of datasets, survey a range of signal-to-image conversion methods, and discuss classification approaches. Furthermore, we comprehensively examine the current challenges and outline future directions for this research domain.\",\"PeriodicalId\":49430,\"journal\":{\"name\":\"Traitement Du Signal\",\"volume\":\"31 \",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Traitement Du Signal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18280/ts.400507\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Traitement Du Signal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/ts.400507","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Advancements in Image Feature-Based Classification of Motor Imagery EEG Data: A Comprehensive Review
Non-invasive acquisition and analysis of human brain signals play a crucial role in the development of brain-computer interfaces, enabling their widespread applicability in daily life. Motor imagery has emerged as a prominent technique for the advancement of such interfaces. While initial machine and deep learning studies have shown promising results in the context of motor imagery, several challenges remain to be addressed prior to their extensive adoption. Deep learning, renowned for its automated feature extraction and classification capabilities, has been successfully employed in various domains. Notably, recent research efforts have focused on processing and classifying motor imagery EEG signals using two-dimensional data formats, yielding noteworthy advancements. Although existing literature encompasses reviews primarily centered on machine learning or deep learning techniques, this paper uniquely emphasizes the review of methods for constructing two-dimensional image features, marking the first comprehensive exploration of this subject. In this study, we present an overview of datasets, survey a range of signal-to-image conversion methods, and discuss classification approaches. Furthermore, we comprehensively examine the current challenges and outline future directions for this research domain.
期刊介绍:
The TS provides rapid dissemination of original research in the field of signal processing, imaging and visioning. Since its founding in 1984, the journal has published articles that present original research results of a fundamental, methodological or applied nature. The editorial board welcomes articles on the latest and most promising results of academic research, including both theoretical results and case studies.
The TS welcomes original research papers, technical notes and review articles on various disciplines, including but not limited to:
Signal processing
Imaging
Visioning
Control
Filtering
Compression
Data transmission
Noise reduction
Deconvolution
Prediction
Identification
Classification.