{"title":"L¹条件下含分段积分的BV空间定义泛函的逼近","authors":"Thomas Wunderli","doi":"10.29020/nybg.ejpam.v16i4.4934","DOIUrl":null,"url":null,"abstract":"We prove an approximation result for a class of functionals $% %TCIMACRO{\\TeXButton{mathcal G}{\\mathcal{G}}}% %BeginExpansion \\mathcal{G}% %EndExpansion (u)=\\int_{\\Omega }\\varphi (x,Du)$ defined on $BV\\left( \\Omega \\right) $ where $\\varphi (\\cdot ,Du)\\in L^{1}\\left( \\Omega \\right) ,$ $\\Omega \\subset %TCIMACRO{\\U{211d} }% %BeginExpansion \\mathbb{R} %EndExpansion ^{N}$ bounded, $\\varphi (x,p)$ convex, radially symmetric and of the form \\begin{equation*} \\varphi (x,p)=\\left\\{ \\begin{tabular}{ll} $g(x,p)$ & if $|p|\\leq \\beta $ \\\\ $\\psi (x)|p|+k(x)$ & if $|p|>\\beta .$% \\end{tabular}% \\right. \\end{equation*}% We show for each $u\\in BV\\left( \\Omega \\right) \\cap L^{p}\\left( \\Omega \\right) ,$ $1\\leq p<\\infty ,$ there exist $u_{k}\\in W^{1,1}\\left( \\Omega \\right) \\cap C^{\\infty }\\left( \\Omega \\right) \\cap L^{p}\\left( \\Omega \\right) $ so that $% %TCIMACRO{\\TeXButton{mathcal G}{\\mathcal{G}}}% %BeginExpansion \\mathcal{G}% %EndExpansion (u_{k})\\rightarrow %TCIMACRO{\\TeXButton{mathcal G}{\\mathcal{G}}}% %BeginExpansion \\mathcal{G}% %EndExpansion (u).$ Approximation theorems in $BV$ are used to prove existence results for the strong solution to the time flow $u_{t}=\\func{div}\\left( \\nabla _{p}\\varphi (x,Du\\right) )$ in $L^{1}((0,\\infty );BV\\left( \\Omega \\right) \\cap L^{p}\\left( \\Omega \\right) ),$ typically with additional boundary condition or penalty term in $u$ to ensure uniqueness. The functions in this work are not covered by previous approximation theorems since for fixed $p$ we have $\\varphi (x,p)\\in L^{1}\\left( \\Omega \\right) $ which do not in general hold for assumptions on $\\varphi $ in earlier work.","PeriodicalId":51807,"journal":{"name":"European Journal of Pure and Applied Mathematics","volume":"55 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation of BV space-defined Functionals Containing Piecewise Integrands with L¹ Condition\",\"authors\":\"Thomas Wunderli\",\"doi\":\"10.29020/nybg.ejpam.v16i4.4934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove an approximation result for a class of functionals $% %TCIMACRO{\\\\TeXButton{mathcal G}{\\\\mathcal{G}}}% %BeginExpansion \\\\mathcal{G}% %EndExpansion (u)=\\\\int_{\\\\Omega }\\\\varphi (x,Du)$ defined on $BV\\\\left( \\\\Omega \\\\right) $ where $\\\\varphi (\\\\cdot ,Du)\\\\in L^{1}\\\\left( \\\\Omega \\\\right) ,$ $\\\\Omega \\\\subset %TCIMACRO{\\\\U{211d} }% %BeginExpansion \\\\mathbb{R} %EndExpansion ^{N}$ bounded, $\\\\varphi (x,p)$ convex, radially symmetric and of the form \\\\begin{equation*} \\\\varphi (x,p)=\\\\left\\\\{ \\\\begin{tabular}{ll} $g(x,p)$ & if $|p|\\\\leq \\\\beta $ \\\\\\\\ $\\\\psi (x)|p|+k(x)$ & if $|p|>\\\\beta .$% \\\\end{tabular}% \\\\right. \\\\end{equation*}% We show for each $u\\\\in BV\\\\left( \\\\Omega \\\\right) \\\\cap L^{p}\\\\left( \\\\Omega \\\\right) ,$ $1\\\\leq p<\\\\infty ,$ there exist $u_{k}\\\\in W^{1,1}\\\\left( \\\\Omega \\\\right) \\\\cap C^{\\\\infty }\\\\left( \\\\Omega \\\\right) \\\\cap L^{p}\\\\left( \\\\Omega \\\\right) $ so that $% %TCIMACRO{\\\\TeXButton{mathcal G}{\\\\mathcal{G}}}% %BeginExpansion \\\\mathcal{G}% %EndExpansion (u_{k})\\\\rightarrow %TCIMACRO{\\\\TeXButton{mathcal G}{\\\\mathcal{G}}}% %BeginExpansion \\\\mathcal{G}% %EndExpansion (u).$ Approximation theorems in $BV$ are used to prove existence results for the strong solution to the time flow $u_{t}=\\\\func{div}\\\\left( \\\\nabla _{p}\\\\varphi (x,Du\\\\right) )$ in $L^{1}((0,\\\\infty );BV\\\\left( \\\\Omega \\\\right) \\\\cap L^{p}\\\\left( \\\\Omega \\\\right) ),$ typically with additional boundary condition or penalty term in $u$ to ensure uniqueness. The functions in this work are not covered by previous approximation theorems since for fixed $p$ we have $\\\\varphi (x,p)\\\\in L^{1}\\\\left( \\\\Omega \\\\right) $ which do not in general hold for assumptions on $\\\\varphi $ in earlier work.\",\"PeriodicalId\":51807,\"journal\":{\"name\":\"European Journal of Pure and Applied Mathematics\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29020/nybg.ejpam.v16i4.4934\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29020/nybg.ejpam.v16i4.4934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Approximation of BV space-defined Functionals Containing Piecewise Integrands with L¹ Condition
We prove an approximation result for a class of functionals $% %TCIMACRO{\TeXButton{mathcal G}{\mathcal{G}}}% %BeginExpansion \mathcal{G}% %EndExpansion (u)=\int_{\Omega }\varphi (x,Du)$ defined on $BV\left( \Omega \right) $ where $\varphi (\cdot ,Du)\in L^{1}\left( \Omega \right) ,$ $\Omega \subset %TCIMACRO{\U{211d} }% %BeginExpansion \mathbb{R} %EndExpansion ^{N}$ bounded, $\varphi (x,p)$ convex, radially symmetric and of the form \begin{equation*} \varphi (x,p)=\left\{ \begin{tabular}{ll} $g(x,p)$ & if $|p|\leq \beta $ \\ $\psi (x)|p|+k(x)$ & if $|p|>\beta .$% \end{tabular}% \right. \end{equation*}% We show for each $u\in BV\left( \Omega \right) \cap L^{p}\left( \Omega \right) ,$ $1\leq p<\infty ,$ there exist $u_{k}\in W^{1,1}\left( \Omega \right) \cap C^{\infty }\left( \Omega \right) \cap L^{p}\left( \Omega \right) $ so that $% %TCIMACRO{\TeXButton{mathcal G}{\mathcal{G}}}% %BeginExpansion \mathcal{G}% %EndExpansion (u_{k})\rightarrow %TCIMACRO{\TeXButton{mathcal G}{\mathcal{G}}}% %BeginExpansion \mathcal{G}% %EndExpansion (u).$ Approximation theorems in $BV$ are used to prove existence results for the strong solution to the time flow $u_{t}=\func{div}\left( \nabla _{p}\varphi (x,Du\right) )$ in $L^{1}((0,\infty );BV\left( \Omega \right) \cap L^{p}\left( \Omega \right) ),$ typically with additional boundary condition or penalty term in $u$ to ensure uniqueness. The functions in this work are not covered by previous approximation theorems since for fixed $p$ we have $\varphi (x,p)\in L^{1}\left( \Omega \right) $ which do not in general hold for assumptions on $\varphi $ in earlier work.