{"title":"具有一般边界条件的一维滚跑运动","authors":"Luca Angelani","doi":"10.1088/1751-8121/ad009e","DOIUrl":null,"url":null,"abstract":"Abstract The motion of run-and-tumble particles in one-dimensional finite domains are analyzed in the presence of generic boundary conditions. These describe accumulation at walls, where particles can either be absorbed at a given rate, or tumble, with a rate that may be, in general, different from that in the bulk. This formulation allows us to treat in a unified way very different boundary conditions (fully and partially absorbing/reflecting, sticky, sticky-reactive and sticky-absorbing boundaries) which can be recovered as appropriate limits of the general case. We report the general expression of the mean exit time, valid for generic boundaries, discussing many case studies, from equal boundaries to more interesting cases of different boundary conditions at the two ends of the domain, resulting in nontrivial expressions of mean exit times.","PeriodicalId":16785,"journal":{"name":"Journal of Physics A","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One-dimensional run-and-tumble motions with generic boundary conditions\",\"authors\":\"Luca Angelani\",\"doi\":\"10.1088/1751-8121/ad009e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The motion of run-and-tumble particles in one-dimensional finite domains are analyzed in the presence of generic boundary conditions. These describe accumulation at walls, where particles can either be absorbed at a given rate, or tumble, with a rate that may be, in general, different from that in the bulk. This formulation allows us to treat in a unified way very different boundary conditions (fully and partially absorbing/reflecting, sticky, sticky-reactive and sticky-absorbing boundaries) which can be recovered as appropriate limits of the general case. We report the general expression of the mean exit time, valid for generic boundaries, discussing many case studies, from equal boundaries to more interesting cases of different boundary conditions at the two ends of the domain, resulting in nontrivial expressions of mean exit times.\",\"PeriodicalId\":16785,\"journal\":{\"name\":\"Journal of Physics A\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/ad009e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad009e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
One-dimensional run-and-tumble motions with generic boundary conditions
Abstract The motion of run-and-tumble particles in one-dimensional finite domains are analyzed in the presence of generic boundary conditions. These describe accumulation at walls, where particles can either be absorbed at a given rate, or tumble, with a rate that may be, in general, different from that in the bulk. This formulation allows us to treat in a unified way very different boundary conditions (fully and partially absorbing/reflecting, sticky, sticky-reactive and sticky-absorbing boundaries) which can be recovered as appropriate limits of the general case. We report the general expression of the mean exit time, valid for generic boundaries, discussing many case studies, from equal boundaries to more interesting cases of different boundary conditions at the two ends of the domain, resulting in nontrivial expressions of mean exit times.