Vasiliki Gkioka, Olga Balaoura, Maria Goulielmaki, Constantin N. Baxevanis
{"title":"当代转化性癌症研究生物银行组织","authors":"Vasiliki Gkioka, Olga Balaoura, Maria Goulielmaki, Constantin N. Baxevanis","doi":"10.3390/onco3040015","DOIUrl":null,"url":null,"abstract":"Cancer biobanks have a crucial role in moving forward the field of translational cancer research and, therefore, have been promoted as indispensable tools for advancing basic biomedical research to preclinical and clinical research, ultimately leading to the design of clinical trials. Consequently, they play an essential role in the establishment of personalized oncology by combining biological data with registries of detailed medical records. The availability of complete electronic medical reports from individualized patients has led to personalized approaches for diagnosis, prognosis, and prediction. To this end, identifying risk factors at early time points is important for designing more effective treatments unique for each patient. Under this aspect, biobanking is essential for accomplishing improvements in the field of precision oncology via the discovery of biomarkers related to cellular and molecular pathways regulating oncogenic signaling. In general terms, biological samples are thought to reflect the patient’s disease biology, but under certain conditions, these may also represent responses to various biological stresses. Divergent collection, handling, and storage methods may significantly change biosamples’ inherent biological properties. The alteration or loss of biological traits post-collection would lead to the discovery of nonreliable biomarkers and, consequently, to irreproducible results, thus constituting a formidable obstacle regarding the successful translation of preclinical research to clinical approaches. Therefore, a necessary prerequisite for successful biobanking is that the stored biological samples retain their biological characteristics unchanged. The application of quality standards for biospecimen collection and storage could be useful for generating encouraging preclinical data leading to the successful translation to clinical treatment approaches. Herein, we aim to comprehensively review the issues linked to biobank implementation for promoting cancer research.","PeriodicalId":74339,"journal":{"name":"Onco","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Organization of Contemporary Biobanks for Translational Cancer Research\",\"authors\":\"Vasiliki Gkioka, Olga Balaoura, Maria Goulielmaki, Constantin N. Baxevanis\",\"doi\":\"10.3390/onco3040015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cancer biobanks have a crucial role in moving forward the field of translational cancer research and, therefore, have been promoted as indispensable tools for advancing basic biomedical research to preclinical and clinical research, ultimately leading to the design of clinical trials. Consequently, they play an essential role in the establishment of personalized oncology by combining biological data with registries of detailed medical records. The availability of complete electronic medical reports from individualized patients has led to personalized approaches for diagnosis, prognosis, and prediction. To this end, identifying risk factors at early time points is important for designing more effective treatments unique for each patient. Under this aspect, biobanking is essential for accomplishing improvements in the field of precision oncology via the discovery of biomarkers related to cellular and molecular pathways regulating oncogenic signaling. In general terms, biological samples are thought to reflect the patient’s disease biology, but under certain conditions, these may also represent responses to various biological stresses. Divergent collection, handling, and storage methods may significantly change biosamples’ inherent biological properties. The alteration or loss of biological traits post-collection would lead to the discovery of nonreliable biomarkers and, consequently, to irreproducible results, thus constituting a formidable obstacle regarding the successful translation of preclinical research to clinical approaches. Therefore, a necessary prerequisite for successful biobanking is that the stored biological samples retain their biological characteristics unchanged. The application of quality standards for biospecimen collection and storage could be useful for generating encouraging preclinical data leading to the successful translation to clinical treatment approaches. Herein, we aim to comprehensively review the issues linked to biobank implementation for promoting cancer research.\",\"PeriodicalId\":74339,\"journal\":{\"name\":\"Onco\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Onco\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/onco3040015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Onco","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/onco3040015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Organization of Contemporary Biobanks for Translational Cancer Research
Cancer biobanks have a crucial role in moving forward the field of translational cancer research and, therefore, have been promoted as indispensable tools for advancing basic biomedical research to preclinical and clinical research, ultimately leading to the design of clinical trials. Consequently, they play an essential role in the establishment of personalized oncology by combining biological data with registries of detailed medical records. The availability of complete electronic medical reports from individualized patients has led to personalized approaches for diagnosis, prognosis, and prediction. To this end, identifying risk factors at early time points is important for designing more effective treatments unique for each patient. Under this aspect, biobanking is essential for accomplishing improvements in the field of precision oncology via the discovery of biomarkers related to cellular and molecular pathways regulating oncogenic signaling. In general terms, biological samples are thought to reflect the patient’s disease biology, but under certain conditions, these may also represent responses to various biological stresses. Divergent collection, handling, and storage methods may significantly change biosamples’ inherent biological properties. The alteration or loss of biological traits post-collection would lead to the discovery of nonreliable biomarkers and, consequently, to irreproducible results, thus constituting a formidable obstacle regarding the successful translation of preclinical research to clinical approaches. Therefore, a necessary prerequisite for successful biobanking is that the stored biological samples retain their biological characteristics unchanged. The application of quality standards for biospecimen collection and storage could be useful for generating encouraging preclinical data leading to the successful translation to clinical treatment approaches. Herein, we aim to comprehensively review the issues linked to biobank implementation for promoting cancer research.